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ABSTRACT

A GENETIC ALGORITHM FOR NETWORK TRANSPORT PROTOCOL
PARAMETER OPTIMIZATION

Adrian Granados Murillo

The fields of wireless communications and mobile networlaregrapidly growing
and changing. In a mobile ad hoc network, the variation df tiharacteristics, and
frequent and unexpected changes in topology, decreaspsitioemance of commonly
used transport protocols, which assume that packet draps oaly in the event of
network congestion. Link failure and higher bit error rategy also induce a sudden
increase of packet losses, triggering the activation ofjeshon avoidance mechanisms
that reduce the overall transmission rate.

In general, a transport protocol has numerous configurg@goameters (e.g.
window size, retransmission timeout, etc.) that can bestéflito compensate for these
environment effects. Thus, the challenge is to identify tighe best configuration (i.e.
combination of parameter values) for a given scenario.

In this work, an optimization approach based on geneticrdlgus is used to
automatically tune, in real time, the parameter values adisport protocol so that it can
adapt itself to different operating conditions. When coredao an exhaustive search over
a reduced problem space, the experimental results showhthptoposed algorithm can
identify the optimal configuration settings to maximizeaighput for end-to-end wireless

communication over multiple hops.
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INTRODUCTION

The fields of wireless communications and mobile networkiregrapidly growing
and changing. Mobile ad hoc networks (MANETS) are of gretgrast for military and
rescue applications where an easy and quick deploymentarhancinication
infrastructure is required to support the operations inbtdefield or disaster area. More
recently, advances in wireless technologies have led to@easing popularity of
MANETSs in other areas of application such as home and offieear&ing, industry, and
person-to-person communication. In a MANET, wireless sathn freely move to
organize arbitrary, and temporary network topologieddmig an ad hoc communication
infrastructure. Compared to wired networks, where nodes figed locations and
topologies are static, MANET topologies are quite dynartherefore, operating
conditions cannot be predicted during the network desiggestSudden and rapid
changes in topology can occur as a results of the movememtodomore nodes, signal
interference, power failure, and other important facté&ggelou, 2005). As a result,
frequent and unexpected node disconnections and patiptisrs are common in
MANETS.

In general, the use of protocols for wired networks has beepted for mobile
wireless networking. However, it has been demonstratddhieaunpredictable movement
of nodes and the nature of wireless communication techyajogatly decreases the
performance of commonly used network protocols (Calaghat&n, Eoff, & Hamilton,
2004; Elaarag, 2002; Li, Qiu, Zhang, Mahajan, & Rozner, 3008e lack of adaptability
and a design based on assumptions that are only valid forfietdork topologies prevent

these protocols from having the same performance that is\athin wired networks. In



particular, the Transmission Control Protocol (TCP) dostsperform as well in MANETSs
as it does in fixed networks (Calagaz et al., 2004; Elaara@R;2B8urtov & Floyd, 2004;
Mulabegovic, Schonfeld, & Ansari, 2002).

Normally, protocols for fixed networks are configured andwesied for generic
environments. In addition, once protocols are deployesl; tequire few or no
adjustments because operating conditions in this typetefork rarely vary. Moreover,
the main assumption in the operation of transport protasdlsat adverse conditions, if
any, will occur only in the event of network congestion (@uwr& Floyd, 2004). When
congestion occurs, packet drops increase, and transpdoicpts immediately activate
flow control mechanisms to significantly reduce the transiaisrate to revert the
congestion condition.

In the case of wireless networks, link failure or higher biberates produce an
increase in the number of packet losses, activating the sagobhanisms for congestion
avoidance. As a result, protocols unnecessarily and imabaglidecrease the transmission
rate. For this reason, frequent and significant variatiansk characteristics have a great
impact on the performance of transport protocols in MANETSs.

Transport protocols for ad hoc networking need to contislyoadapt in order to
satisfy the Quality of Service (QoS) requirements of higlegel applications and improve
the performance in wireless networks. This continuous tadi@m can be accomplished by
(a) modifying existing protocols to make them aware of thenges in network conditions
that are not related to congestion, or (b) designing prdsabat are optimized for
wireless networks. These two approaches usually resutbilogols that are characterized
for having a number of modifiable parameters that still nedakttuned to satisfy the QoS
requirements of higher level applications, which oftenéhawneed for a network that is

optimized along certain characteristics such as reltgbdelay, power consumption, or



overhead. However, the task of manually tuning and idenigfgets of optimal (or
near-optimal) protocol parameter values is combinatariahture and not practical.

In this work, a genetic algorithm (GA) is used to automaticaine the parameter
values of a transport protocol. The main objective of theope®d algorithm is to optimize
the protocol to improve its performance based on one of aépetential QoS metrics
such as number of retransmissions, transmission delayhamaghput.

A GA is a heuristic search method inspired in Darwin’s themirgvolution where
populations of individuals compete and only the fittest s vGAs incorporate the
biological principle of natural evolution and genetics tofeial systems and have been
successfully applied to numerous problems, includingraatec programming, machine
learning, economics, social systems, population genetics others (Mitchell, 1996).

More importantly, GAs are considered to have a surprisirtgt@al as adaptive
search techniques to solve optimization problems becalsac@n quickly explore an
extensive search space, and are highly effective in thepoesof noise (Russell &
Norvig, 2002). Additionally, GAs have been shown to be sastd at finding solutions or
optimizations for complex and difficult problems for whichaditional search methods are
less effective. However, in addition to advantages, GAs hés/e disadvantages. Their
main drawback is their tendency to prematurely convergedoal optimum. This
premature convergence occurs when an individual, who i€ ritathan others at early
stages, dominates on the reproduction process and leadsdal @ptimum convergence,
preventing the algorithm to perform a more systematic $elvat could lead to a global
optimum. Another disadvantage of GAs is the time they mag takfind a possible
solution, which depends on the computational complexityheffunction that evaluates
the fitness of an individual. Nevertheless, different sgads for genetic code
manipulation and approaches for parallel execution haee peoposed to avoid the

premature convergence problem and other disadvantage&sofdtchell, 1996).



Despite their shortcomings, GAs have been successfullyempip optimization
problems in MANETS by exploiting their ability to quickly pvide good solutions in
highly dynamic contexts (Barolli, Koyama, & Shiratori, ZYMontana & Redi, 2005;
Turgut, Das, Elmasri, & Turgut, 2002), demonstrating thAs@an be used effectively for
complex problems in the field of wireless networks, a field retfending estimate
solutions would be otherwise impossible or difficult to asta.

This document is organized as follows. Chapter 1 charaetethe effects that
wireless communications have on network transport profoedormance and the
different proposals that can been found in the literatua¢ ahm to improve the
performance of transport protocols in wireless networkgaiiers 2 and 3 describe the
thesis proposal, technical approach, and optimizatioordlgn. Chapter 4 presents the
experimental setup and the analysis of results that demadeshe feasibility of transport
protocol parameter optimization using GAs. Finally, Cleayfit discusses the advantages,

disadvantages, and limitations of the proposed optinunalgorithm.



CHAPTER |
LITERATURE REVIEW
The literature review can be classified into two distincegaties. The first
category consists of research work that illustrates thextffthat wireless communications
have on the performance of network transport protocols.sBeend category consists of
proposals that aim to improve the performance of these potga@ver MANETS. A
complete survey of this large body of work is beyond the safibis chapter; results that

directly impact this research work are summarized.

Transport Protocol Performance

Various authors have investigated the causes of perforen@degradation that is
experienced by transport protocols in wireless networksciVof the previous research
studies have been focused in the analysis of the effectsvileless environments have on
TCP, a protocol vastly used in wired networks and the Interh€P is a
connection-oriented protocol that provides reliable andnder packet delivery
(Information Sciences Institute, 1981; Tanenbaum, 200&is protocol can adapt itself to
different network conditions using mechanisms for flow colthat are triggered when
packet drops are detected. The flow control algorithms fonrsgveral TCP
implementations were designed under the assumption thképdrops occur only in the
event of network congestion and not as a result of damagdeisagiven that bit errors
in wired networks were and are still practically negligible

Nevertheless, packet drops in MANETS not only occur fronwoek congestion
but also from higher bit error rates, link failures, limitadd variable bandwidth, and node

mobility. In wireless networks, higher bit error rates pnod a higher number of damaged
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data and acknowledgment packets, whereas node movemepdaed failure may cause
periodic disconnections of mobile nodes. According to aeseers, the most important
cause for TCP performance degradation in MANETS is the TQEexs inability to
distinguish packet losses that are due to congestion frosetthat occur when the link
fails (Aggelou, 2005; Calagaz et al., 2004; Elaarag, 20G#tadd & Vaidya, 2002;
Xylomenos, Polyzos, Mahonen, & Saaranen, 2001).

In general, TCP activates its congestion control mechasishen packet losses
are detected, reducing the number of outgoing packets hatlgoal to stabilize the state
of the flow. However, TCP also activates these mechanisms @afiak or route fails and
packets are dropped, unnecessarily reducing the flow ofgpaeken after links and routes
are reestablished (Lochert, Scheuermann, & Mauve, 200i3.Behavior results in
immediate and undesired performance degradation in tlsepece of node mobility, bit
errors, power failure, and network handoff (Gurtov & Flog804; Xylomenos et al.,
2001).

Mechanisms to provide the TCP sender with information abokitand route
failures can significantly improve the performance of TCRI(&hd & Vaidya, 2002). For
example, by monitoring explicit congestion notificatiorOf&) or ICMP (Internet Control
Message Protocol) destination unreachable messages,arGietermine that detected
packet drops are caused by link failures and are not a refSodttevork congestion.

Interference is also an important cause of performanceadatjon in wireless
networks (Al Hanbali, Altman, & Nain, 2005; EIRakabawy, Kien, & Lindemann, 2005;
Fu et al., 2005; Jain, Padhye, Padmanabhan, & Qiu, 2003) iBuke presence of a
single TCP flow, the successive transmission of packetsexnediate nodes, through a
multi-hop path, interferes with each other as packets moward the destination

(Figure 1). Protocol performance degrades as the numbeapsf thaversed increases



because communication happens over a shared medium ameciedfby the induced

interference of hidden (and exposed) nodes.

Figure 1. A network topology with a multi-hop communication path.

In wireless networks, the hidden node problem (Figure 2reetio a scenario

where a node is out of range from other nodes. For examplsjd®ema scenario with

three nodes. Node A and node C have a packet to transmit toBidglecause node C is

outside the transmission range of node A, node C cannottdetde A's transmission to

node B; node C is hidden from node A. If node A and node C tranahtihe same time,

there will be packet collisions at node B. The hidden nodélerm is partially solved not

at the transport level, but usually at the Medium Access @b{MAC) level by a
two-way handshake that precedes the transmission calledMcarrier sensing

(Tanenbaum, 2002). However, the problem may persist in achbtworks because the

range at which a MAC frame can be decoded and successfulivegtis always shorter

than the range at which a transmission can be detected, h#aoeipting the reception of

virtual carrier sensing messages (Cordeiro & Agrawal, 2606et al., 2005).



Collision

Figure 2. The hidden node problem scenario. Node C is hidden from nodausing
collisions at node B if node A and node C transmit at the same.ti

Conversely, another effect of interference in wireless@dretworks is defined as
the exposed node problem (Figure 3). In this case, node A adé @ are within node B’s
transmission range, and node A is outside the transmisamagerof node C. If node B has
packet to transmit to node A and node C also has a packet sntiito node D, node B’s
transmission would prevent node C from sending a packetde oy although this

transmission would not cause interference at node A.

Figure 3. The exposed node problem scenario. Node B’s transmissioode A prevents
node C from sending packets to node D.

The problems caused by interference are usually addregdatkbayer
mechanisms such as virtual carrier sensing and retransmigsdamaged packets.

However, the exchange of messages to perform virtual caeesing in the presence of



multiple nodes and the excessive number of retransmissiagsndirectly degrade the

performance of higher layer protocols, including trangpootocols like TCP.

Related Work

Various proposals to improve the performance of transpotbgols in wireless
networks can be found throughout the literature. The charaation of these proposals
made by Al Hanbali et al. (2005) suggests that they can bsitieginto (a) layered
proposals and (b) cross layer proposals. In layered prégpdba performance of a
transport protocol is improved, directly or indirectly, the adaptation of one of the layers
in the network stack. Conversely, cross layer proposaldwemwo or more layers that
share information through a predefined set of interfacebaittansport protocols can
adapt accordingly to specific network operating conditions

Many of the proposals found in the literature have focuseddaptations to
improve the performance of the TCP protocol (Calagaz e@04; Elaarag, 2002;

El Khayat, Geurts, & Leduc, 2005; EIRakabawy et al., 200Bhocaigh new transport
protocols have also been designed specifically for wiretessorks (Akan & Akyildiz,
2004; Mulabegovic et al., 2002; Navaratnam, Cruickshankag&zolli, 2007; Wu & Rao,
2005).

In general, adapting preexisting protocols allows for deasly inter-networking
between the wired and the wireless worlds. On the other lanods layer based strategies
and transport protocols specifically designed for MANETesraore difficult to
implement. However, they may achieve better results sindetlying protocols can work
jointly, allowing the transport protocol to monitor chaisge the environment and adapt
itself accordingly.

Each of these proposals attempts to overcome the main cthadekegrade the

performance of TCP in wireless environments, such as higértor rates, link breakage,



limited and variable bandwidth, and interference. Howgivés usually the case that these
adaptations do not consider all causes at the same timedseoathe complexity of the
design and implementation. Therefore, they offer betteiopmance only under very
specific conditions of the network, where environmentsroféek frequent and sudden
topology changes, multi-hop paths, and induced interfareAlso, most of these
adaptations lack mechanisms to dynamically tune protca@rpeters in order to optimize
the performance of individual connections based on theeatimmetwork conditions.

Given the impossibility of transport protocols to globadigdress all the challenges
arising from the nature of wireless networks, some propaskegbtations focus on the
optimization of protocol parameters to improve the perfange under a variety of
scenarios. In general, optimization approaches can bgaraed into (a) offline

optimization and (b) online optimization.

Offline Optimization

In offline optimizations, network conditions are known (ssamed), and protocol
parameter tuning is achieved through the simulation ofregwetwork configurations for
which one or more optimization algorithms are executed. Jaed of offline optimization
is to find suitable protocol parameters that can maximize#rrmance of the network
when operating under certain predetermined conditionkismork, Suydam (2004)
designed an algorithm based on adaptive simulated angedaliptimize the TCP
segment and receiver window size in a simulated environmidm goal of this proposal
is to maximize the throughput of TCP in real wireless ad-hetsworks. Adaptive
simulated annealing is a variation of simulated anneaiinigch is a search heuristic used
for large-scale optimization problems (Russell & Norvi§02). It is adaptive because the
parameters of the algorithm are automatically adjustet@®gresses, making it more

efficient and less sensitive to user defined parameters.eBudts obtained in this work
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demonstrated that the proposed offline optimization allgoriprovided a significant
increase of the average throughput in ad hoc wireless nkswor

El Khayat et al. (2005) proposed an algorithm to classifykpatoss causes to
improve the performance of TCP with the objective to achebetter throughput over
wireless links. In their work, the authors applied a supdilearning algorithm to
automatically infer a packet loss cause classifier from alzege of 25,000 losses observed
in a thousand simulated random topologies with simulatettgtelows. Supervised
learning is a machine learning technique which focuses entifying a mapping from
some input variables to some output variables from a sanigbservations of these
variables (Russell & Norvig, 2002). More precisely, the mgoal of supervised learning
is to generalize from training data so as to predict the vafube output variables when
presented to any valid input set. The classifier construayetie learning algorithm
provided good accuracy at classifying losses for all theutated network topologies that
were considered in the experimental analysis and in actinaless networks.

It is important to note that the main limitation encountevath offline
optimization is that optimal protocol settings may be fowmdly for the network
conditions that were considered in the simulations. Intitionce optimal settings are
found, they are fixed for all possible scenarios. As a reayitotocol may perform poorly
if network conditions significantly vary from those that weronsidered during the

simulation.

Online Optimization

In online optimization the network conditions are unknoand protocol
parameter tuning is achieved through optimizations theparformed dynamically as
conditions change. This type of approach requires a consbaervation of the

environment and monitoring of the current protocol perfante, which makes online
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optimizations more difficult to implement than offline appcbes. Moreover, the online
optimization of protocol settings in MANETSs should be madegaickly as possible as
network conditions may change rapidly.

Some online optimizations of network transport protocobpaeters based on
heuristic search algorithms can be found in the literatReo and lyengar (2004)
proposed an algorithm to dynamically optimize the size eftindow for window-based
transport protocols. The algorithm was designed to motite®network conditions and
adjust the sending rate in order to achieve a target thraughge. It uses stochastic
approximation methods to stabilize the throughput of thagport stream by adjusting the
size of the window if the estimated throughput is above ooweld certain threshold.
Stochastic approximation algorithms are heuristic-bagenization algorithms that
incorporate probabilistic elements to attempt to estinttatesolution of a problem from
noisy observations. The randomness introduced to thelspancess aims to speed up the
convergence of the algorithm and to make it less sensititeamoise introduced by
modeling or simulation errors (Russell & Norvig, 2002; Ye &lganaraman, 2004).

Wu and Rao (2005) proposed a similar approach called RellablP-based
Network Adaptive Transport (RUNAT). In this approach, atpaml based on the User
Datagram Protocol (UDP) was designed to dynamically céttietransmission rate of
the sender based on the statistical behavior of individoihections. The authors defined
three different congestion states for a given connectiodetutilized, saturated, and
overloaded. The main goal of RUNAT is to avoid congestiotestabove or below the
saturated level using a rate control mechanism for inteigedelays between packets.
Once the connection congestion is at the saturated lewesehding rate is statistically
stabilized using stochastic approximation methods taatlle protocol to achieve

maximum throughput.
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The results obtained by Rao and lyengar (2004) and Wu and Z0&&)
demonstrated the effectiveness of statistical controhous for throughput stabilization
over wide-area networks under various traffic conditionswelver, experiments were not
conducted to verify the effectiveness in throughput sizdtiion in MANETS, although
these networks seem to be an ideal ground for the proposerdthtgs because of the
noisy conditions under which communications are performed

Akan and Akyildiz (2004) proposed another redesign of agjpaint protocol
capable of performing online optimization of the protocatgmeters. In this case, the
authors designed a new transport layer that incorporatediaptive congestion control
mechanism to dynamically adjust the AIMD (Additive-IncseaMultiplicative-Decrease)
parameters of the transport protocol. The algorithm usesded random search strategy
based on the wireless-related packet loss probability @admne-way wireless link delay,
which are calculated with the help of an underlying adaptiveC layer. This layer is
capable of detecting packet losses resulting from accédesgfgbit-errors, fading and
signal loss caused by network handoff (switching over aedzffit wireless access point).
Thus, the protocol can distinguish correctly between wssirelated and
congestion-related packet losses used to calculate thé& BB settings given the
conditions of the network. The results obtained in this waltkw that the new transport
layer was capable of achieving high performance for hetregus wireless networks
under a wide range of packet losses and link delays. Howtenmnplementation of this
algorithm is complex because of the requirements for clags- interaction in order to
monitor the conditions of the wireless link.

A different approach for online optimization of network pwool parameters was
suggested by Ye and Kalyanaraman (2001). In their work, pnegosed a hybrid
optimization strategy that uses a simulation componenalcutate and dynamically

adjust the settings of the transport protocol. The searofpoment of the algorithm is
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based on random sampling, the simplest and one of the moshoain used randomized
search algorithms. In random sampling, each state in threlfsepace has an equal chance
of being chosen as a possible solution to the problem. Théasmpof the algorithm is

not to find the optimal value for each protocol parameteriddind better operating
points within a limited time frame to quickly adapt the proddbto new network

conditions. It explores the whole parameter space, butsiEegon the optimization of only
those points that fall within a certain region. In order tofpem the optimization in a
real-time fashion, the algorithm uses a simulation compoti&t collects real-time data
from the network and runs a simulation based on the curramditions of the network.
The simulation component uses stochastic approximatiaghads to find better parameter
settings which, once found, are applied back into the nééwbne test results of the
algorithm indicated that it was efficient and robust to nsige real optimization problems
for TCP flows in wired networks.

In a similar path, Ye and Kalyanaraman (2004) designed asteufor an online
network parameter optimization algorithm named RecurR&edom Search (RSS). The
main goal of the algorithm is to overcome the inefficiencitsaadom sampling, which
guarantees the convergence to global optima if the spaaetis, thut becomes inefficient
with many sampling steps and large search spaces (Russalh&dgy2002; Ye &
Kalyanaraman, 2004). In order to keep the initial high-edficy property of random
sampling, the RSS algorithm was designed to constantlgntdsie sampling over a new
reduced sample space to increase its robustness. InikS8I$ samples the whole
parameter space to inspect the general structure of thmiaption problem. Then, it
moves or resizes the sample space accordingly to previahsations of the optimization
function and restarts the random sampling to gradually eqe/to a local optimum. The
exploitation (local) phase of the algorithm is separated iwo different sub-phases:

realignment and shrinking. In the realignment sub-phdmsealgorithm performs random
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sampling in the neighborhood of a promising poinvith the assumption that the
algorithm will find a better solution close 1o If the algorithm fails to find a better point,
the shrinking sub-phase takes over to reduce the size oathple space. This process
continues until the size of the sample space falls belowtaicethreshold previously
determined by the user and dictated by the requirementeafftimization problem.
Even though tests were not conducted on any network trangpaiocol, the simulation
results show a substantial improvement in network perfoceavhen the algorithm was
applied to different protocols for route and queue managesiech as OSPF (Open
Shortest Path First) and RED (Random Early Detection).

Most of the proposed offline and online optimization alduns discussed so far
are known as stochastic search algorithms. A GA is also &asbic search method that
has been previously applied to various optimization pnoisién ad hoc networks (Barolli
et al., 2003; Roy & Das, 2004, Turgut et al., 2002), partidylenotivated by the fact that
GAs perform much better than other stochastic methods igadigandscapes (where
many local optima is located far from the global optimum)lespopulation-based
approach allows GA to efficiently explore more extensivearg of the search space
(Mitchell, 1996).

More precisely, a GA is a search and optimization techniaewas invented by
John Holland in the 1960s and inspired by the theory of elaairy computation.
Evolutionary computation aims to develop artificial syssdmsed on the principles of the
Darwinian evolutionary system, where one or more dynampufadions of individuals
compete for limited resources (De Jong, 2006). A simplewiarary algorithm consists
of a population of constant size that evolves over time, @leach individual in the
population represents a possible solution to a problent lifahhumans, individuals in the
population reproduce to generate children that resembleplarents and diversify the

population. These new individuals can then reproduce tebms, and as the generations
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pass by, the population evolves. To maintain the constaatafithe population, the
resulting expanded group of individuals (parents and ciylis then reduced to its
original size by following a replacement strategy thatssl@nd discards individuals
based on certain criteria. In general, this cycle repedibaipredefined evolution state is
achieved for one or more individuals, or until a fixed numbiateyations have passed.

The central notion of a GA follows the same idea of evolutigredgorithms. In a
GA, states are treated as individuals in a population, eaelrepresented by a finite string
of symbols, known as thgenomeencoding a possible solution in a given problem space.
The evolution process is guided by a fitness function thasraach individual state and
determines its probability of survival and reproductiamwating Darwin’s theory of the
survival of the fittest during the evolution of species. Gangently, high-fithess
individuals stand a better chance of passing to the nextrggoe and reproducing, while
low-fitness ones are more likely to disappear, obtaining@pmate solutions that are
closer to the problem’s optimal solution (Russell & Non2§02; Sipper, 1996).

The success of a GA depends on the problem representaticodjeg) and the
genetic operators: (a) selection, (b) crossover, and (¢athon (Michalewicz, Eiben, &
Hinterding, 1999; Vasconcelos, Ramirez, Takahashi, & &#td, 2001). In the general
case, the selection operation dictates which pairs of iddals are chosen to participate in
the reproduction process, whereas crossover combineigeode from two individuals
to generate children that hold part of the genome from botarga. On the other hand,
mutation consists of randomly modifying the genetic codaroindividual by altering
sections of the genome based on some (small) probabilityafidm allows the algorithm
to randomly sample new points in the search space to preyaenaature convergence to
local optima (Mitchell, 1996; Sipper, 1996).

In the field of transport protocols there is not much literattegarding the use of

GAs in MANETS, except for some research studies that have feeeised on improving
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the performance of mechanisms that are closely relatedmgport, such as congestion
control and routing protocols. Galily, Roudsari, and R{@f05) made an interesting
contribution to congestion avoidance, for which they pigzba controller for an Active
Queue Management system that applies GA to find the optinnahpeters to efficiently
regulate the link utilization and delay experienced by gatekets. The simulation results
show that the system was responsive and tolerant to the dgsamd noise of the network
environment, although only fixed networks were considengtié experimental analysis.

Montana and Redi (2005) made another important contribdhat illustrates the
promising use of GAs to perform optimization of network ails in MANETS.
Performance of routing protocols in MANETS, especiallyctaae protocols which
maintain a global view of the topology, have a great impadhenoverall performance of
the network infrastructure (Huang, Bhatti, & Parker, 200@ntana & Redi, 2005).
Routing protocol parameters such as refresh and updatealgeguide the ability of
adaptation to changes. Short intervals provide a more atxuiew of the topology at any
given time, but increase the overhead incurred by the exgehaflink state messages.
Therefore, parameter values need to be tuned so as to img@performance of the
routing protocol under different scenarios. However, #sktof manually tuning and
identifying sets of optimal (or near-optimal) parametduea is combinatorial in nature
and not practical, so the proposed algorithm was designtoheomultiple parameters of a
routing protocol through offline optimization using a siagbjective classical GA.

The optimization algorithm randomly generates an init@pplation with states
that consist of a list of values for the parameters to be dapéich The algorithm uses a
selection scheme with a steady-state replacement pobltyattds a new individual and
discards the worst member of the population at each geagrrdtievaluates the fithess of
an individual by running a simulation of the network, cotlag statistics about the

network performance given the current parameter values fifitess value for an
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individual is a combined score based on the percentage ppdbpackets and average
delay that were observed during the simulation.

The results of this work show that automated parameter dgdimon produced
significantly better parameter values than hand tuninghlgh the algorithm was
considered to optimize only the parameters of a routingomalt results also indicate that
automated parameter tuning through a GA may be succesafyblyed to improve the
performance of transport protocols in MANETS.

In a summary, the optimization of protocol parameters hasraéadvantages over
particular adaptations of existing and new transport ma# First, rather than
implementing one or more specialized mechanisms to deblmdtbility, interference,
and others factors that have an impact on the protocol pegnce, an optimization
algorithm can improve the performance of the protocol urmiféerent scenarios with
little or no protocol modifications. Second, because patantening should require little
or no protocol adaptation, protocols can still interopetatween the wired and the
wireless worlds in a seamless manner. Third, optimizatigarghms provide a more
general solution for end-to-end transport optimizatioarawnulti-hop paths, where noisy
conditions on intermediate links may significantly affdet bverall performance of the
protocol.

Given the results and conclusions of the related work, thpgsed optimization
algorithm aims to take advantage of the capabilities of GAgrovide a general solution
for protocol parameter optimization, so as to improve theé&nend transport

performance under different mobility and interferenceditbans in MANETS.
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CHAPTER I
GENETIC ALGORITHM FOR TRANSPORT OPTIMIZATION

The proposal for protocol parameter optimization aims tpriowe the
performance of a network transport protocol for differdasses of operating conditions.
Based on previous work, it has been demonstrated that rtyodild interference have a
great impact on the performance of routing and transpotbpods in multi-hop wireless
networks (Fu et al., 2005; Jain et al., 2003).

Modifiable parameters of transport protocols can be adjustadapt the protocol
to different operating conditions, improving the protopetformance and allowing higher
level applications to satisfy their QoS requirements. Tiogpsed algorithm, called
Genetic Algorithm for Transport Optimization (GATO), is &Aéased search algorithm
that enables automatic parameter tuning for transporopods.

The main goal of GATO is to find a set of parameter values thptaves the
protocol performance given the conditions of the netwadirkohditions change, the
algorithm automatically searches for a new configuratiopashmeters that allows the
protocol to continue operating at maximum performance.

Several metrics can be used to quantify the performancerahagiort protocol, for
example, transmission delay, number of retransmissiamsber of bytes received per unit
of time, and others. For more complex scenarios and QoSresgants, a combination of
various metrics can also be used to determine the perforenafrectransport protocol.

In this research study, protocol performance will be meadim terms of
throughput, which can be defined as the amount of user daistéraed from the sender to

the receiver over a given period of time. Other performanetrios or objective functions
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combining multiple metrics could be chosen, but for simpti¢his work will focus on a
single metric.

The maximum throughput that can be achieved by a transpaitqol depends on
the majority of modifiable parameters that can be found insppart protocols, in
particular, parameters that are used for flow control. Farmgde, a sender may stop
sending packets until an acknowledgment of the last sekigpacreceived. If the
previous sent packet is lost and the retransmission tirmsaob large, the flow of packets
is reduced and the throughput decreases. By adjusting theqot parameters, flow
control mechanisms can react better to adverse condisoieh, as higher packet drops,
and increase the flow of packets if necessary.

Hence, the fitness function of GATO computes the throughghiezed by the
protocol when configured with the parameter values that@eeded in the individual.
Each individual encodes a possible protocol configuratgoa kst of parameter values.
The genetic operators of GATO combine and randomly changgehetic information of
individuals as a mean to explore different regions of thectespace, which is comprised
of a finite, but usually large, number of possible protocaifagurations.

In this work, a reduced search space is used to validate fibetigéness GATO.

By having a reduced search space, the optimal parametersvafiihe protocol for a
specific scenario can be found in a reasonable amount of simg an exhaustive search.
The throughput achieved by the protocol when configured thighoptimal settings can be
used as a baseline to compare the performance of the pratbeol configured with the
parameter values found by GATO. This comparison can be mabteg as network
conditions are replicated over different runs of the seatghrithms to assure that

differences in protocol performance are due only to difiegarameters values.
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CHAPTER IlI
TECHNICAL APPROACH
The proposed algorithm for transport optimization is base@&As, which are
stochastic search algorithms inspired in the theory ofigiahary computation and
genetics. GAs are commonly used to solve optimization jgroklas they can quickly
explore an extensive search space (Russell & Norvig, 2002 pee highly effective in the
presence of noise, where fitness evaluations may be subjextansistent or error-prone
measurements (Mitchell, 1996). Additionally, they haveroehown to be successful at
finding solutions or optimizations for complex and difficptbblems for which traditional
search methods are slower or less effective. This chapseribes how GAs work and the

proposed algorithm for transport optimization.

Introduction to Genetic Algorithms

GAs follow the same idea of evolutionary algorithms wherepylation of
individuals evolves over time. Each individual in the paiidn encodes a possible
solution to a problem as a finite string of symbols. Duringetielutionary process,
individuals undergo a selection phase that places thetfitigisiduals into a mating pool,
from which they are paired in the presence of genetic opey&tat combine the genetic
information from both parents to generate offspring.

The resulting expanded population is then reduced to itsrai size by following
a replacement strategy for the individuals based on a fitiuession that guides how the
population evolves over time. In general, high-fithessviithlials stand a better chance of
passing to the next generation and reproducing, while lovesis ones are more likely to

disappear. This process is repeated until an individual sétisfies a desired fitness level
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is obtained. However, in some cases, the stopping critanatso take into consideration
the maximum number of generations, the maximum amount cfwcoed resources (time,
memory), or the inability to find better solutions after ataar number of consecutive
generations have passed.

More precisely, a GA incorporates a set of genetic operatatssimulate the
evolution process of survival of the fittest. These gengtierators are (a) selection, (b)
mutation, and (c) crossover. The selection operator is tespdpulate a mating pool of
individuals that can participate in the reproduction pesceConversely, the crossover
operator (Figure 4) combines genetic code from two indigldtio generate children who

resemble their parents, holding one or more sections af plaeents’ genome.
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(a) One-point crossover.
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(b) Two-point crossover.

Figure 4. The crossover operator combines genetic code at randorageatpoints of the
parents’ genome.

On the other hand, the mutation operator (Figure 5) modifiegenetic code of
an individual by altering sections of the genome based oregsmall) probability. This
operator is intended to diversify the population so as tachaaapid convergence of the
algorithm to local optima. The mutation operation is eqlémato performing random

sampling of the search space.
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Figure 5. The mutation operator randomly alters sections of the iddai’s genome.

The standard version of a GA (Figure 6) starts by randomlegging an initial
population of individuals. At each iteration step, the induals in the current generation
are evaluated using a fitness function. Then, individualthgmugh a selection process

from which two parents are selected for the reproductiorselud the algorithm.

input: the initial populationp and the fithess functiom
output: the best individual irp, according tof
repeat
g < empty set
for i =1 to SIZE(p) do
X <= RANDOM-SELECTION(, f)
y <= RANDOM-SELECTION(, f)
child < REPRODUCKK, y)
if some random probabilitshen
child <= MUTATE(child)
end if
addchild toq
end for
p<=q
until some individual is fit enough, or enough time has elapsed

Figure 6. Pseudocode of a simple genetic algorithm (Russell & Noi2@f2, p. 119).

The offspring that results from the combination of both pésegenome is
introduced to a new population. Then, the new generatidiacep the current population
and the process is repeated until some individual is fit ehaugintil enough time has

passed. The algorithm returns the best individual in theectipopulation according to
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the fitness function. Alghough this individual might not be bptimal solution, the best
individual of the population always encodes a partial optisolution that could still be

useful depending on the characteristics of the problem.

Optimization Algorithm

GATO aims to provide the means for automatic protocol patanmtaning by
optimizing the parameter values of a network transportquaitfor different operating
conditions in a MANET. The goal of GATO is to improve the perf@ance of the protocol
in terms of throughput. By adjusting the modifiable paramseté a transport protocol, the
flow control mechanism of the protocol can react better tfeddht network conditions,
increasing the overall throughput of the protocol.

GATO (Figure 7) starts by determining the fithess of eachviddial in the initial
population. At each iteration step, the algorithm compatgsoup of elite members from
the best individuals in the population. Then, for each irdiial in the remaining
population, a new child is generated from two parent indiald who are chosen
following a selection scheme called tournament seleciitis new individual undergoes
a mutation phase based on a variable mutation probabilitgnTfollowing a steady-state
replacement policy, the new child replaces the worst inldigl in the population. This
process is repeated until the maximum number of generasareached or until the elite
members of the population have not changed for enough cotsegenerations. The
algorithm returns the best individual in the populationislindividual represents the set
of parameters that give the best performance of the pratgo@n the operating

conditions that were current at the time the optimizatiak taas performed.
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input: the initial populationp and the fithess functiom
output: the best individual irp, according tof
for i =1 to SIZE(p) do
evaluatep;, f(p))
end for
repeat
elite <= the besn individuals inp, according tof
for i =1 to (SIZE() - SIZE(elite)) do
X <= TOURNAMENT-SELECTION{)
y <= TOURNAMENT-SELECTION()
child <« REPRODUCKE, y)
child <= MUTATE(child, x, y)
evaluatechild, f(child)
remove the worst individual ip, according tof
addchild to p
end for
addeliteto p
until ngenerations have passed,
or the group oklite members is the same afterconsecutive generations

Figure 7. Pseudocode of the genetic algorithm for transport optitiina

More precisely, the design of GATO considers four differaspects: (a)
representation, (b) genetic operators, (c) evaluatioth(dpstopping criteria. Each of
them plays an important role in the success of the optingnatsk as they define the

algorithm’s behavior and how quickly it converges to a soluunder different scenarios.

Representation

The genome of individuals is represented as a list of pammatues to be
optimized. This type of representation is often referredd@ real-valued representation,
and it is commonly used for parameter optimization problernere it is more natural to
use real numbers than a binary encoding to form the indiVelganome. Although there

are not rigorous guidelines for selecting a specific enagpdiven the problem of interest
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(Mitchell, 1996), Wright (1991) demonstrated that reatled GAs can outperform
binary-coded GAs since real-valued representationsaserefficiency and precision.
When a real-valued representation is chosen, it is negegsdefine a minimum
and a maximum value for each of the protocol’'s parameters taptimized, as well as a
step size that defines a discrete set of possible valueswithiallowable range of the
parameter. Defining a step size is important for parametetscan only take integer
values, such as maximum segment size, window size, numlaekabwledgements, and

others.

Genetic Operators

GATO takes an initial population generated with purely mmdndividuals. At
each run, two members of the population are randomly chasemd mating pool, which
is comprised of individuals that in average have a highee$sgnvalue than the average
fitness value of the population. This mating pool is generateng a selection scheme
called tournament selection. On tournament selectiardividuals (competitors) hold a
tournament, witts being the tournament size. The winner of the tournameneis th
individual with the highest fithess among theompetitors; that individual is then inserted
into the mating pool. Tournaments are performed until thémggool has reached a
certain size. When compared to other selection schemeadttatages of tournament
selection include (a) its simplicity and (b) the ability tecrease or decrease the selection
pressure (intensity with which a GA tends to eliminate indlials) by increasing or
decreasing the tournament size, which allows GAs to adatiffeyent problem spaces
(Goldberg & Deb, 1991; Miller & Goldberg, 1995).

The algorithm generates a single child by combining the genof both parents
using single-point crossover. The genetic informatiorheftesulting individual may be

modified based on a mutation probability that is proportidmahe degree of similarity
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between parents, meaning that the probability of the nantaiperator is dynamically
adjusted according to the diversity of the population. Adwapthe probability of genetic
operators has been shown to be effective at improving thestgance rate of GAs and
preventing GAs from converging to local optimum (Sriniva$&tnaik, 1994).

Based on the degree of similarity between parents, the noiasthe parents
are, the higher the mutation probability is. When the alhyomistarts to converge, the
mating pool would consist of individuals who are similar txck other. In this case, the
mutation probability increases, allowing the algorithnmaadomly search other regions of
the problem space. On the other hand, if the diversity of tpmufation is too high, the
mutation probability decreases to allow the algorithm &b8ize and refine the best
individuals in the population.

GATO also follows a steady-state replacement policy, whieeenew individual
replaces the worst member of the population in the curremeiggion. Steady-state
replacement generally allows finding a solution much fatan the generational
approach because the algorithm can immediately exploitindwiduals (Montana &

Redi, 2005). In particular, the use of such replacementpddiimportant in the case of
the proposed algorithm because of the elevated cost of tres§tfunction, which requires
the protocol to operate for a certain amount of time in ordegstimate its performance
given the current configuration.

Furthermore, GATO also maintains a fixed group of the besviddals across
generations. This strategy, commonly knowreassm aims to avoid the loss of the best
individuals during selection, crossover, and mutation &ng on the next generation an
individual whose performance is better than the perforreariother population members
in the current generation. Elitism has been shown to pravedter solutions and higher
convergence speeds for different types of problems (Ahn &a&aishna, 2003; Montana

& Redi, 2005; Vasconcelos et al., 2001).
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Fitness Function

To evaluate an individual, GATO uses the parameter valuesdad in the genome
of the individual to configure the protocol and measure hoW iveerforms in the current
environment. More precisely, GATO creates and configuremaection to measure a
variety of potential performance metrics given the opagationditions of the network. A
performance metric can be based in the number of retranemssshe transmission delay,
the throughput, or a combination of them. For some of theiggtsuch as throughput or
transmission delay, GATO requires a mechanism to moniwp#rformance of the
protocol at the opposite end-point of the connection. Ia taise, the receiver node
collects information about the connection and sends it bathe transmitter so that the

algorithm can compute the fitness value of the individual.

Stopping Criteria

The main goal of GATO is to find an individual who leads to an ioygment of
one or more performance metrics. Hence, the algorithm sthyes it cannot find a better
individual after a given number of consecutive generatltage passed. In other words,
the group of elite members in the population remains the sdtaea certain number of
iterations. GATO also considers the total number of germrato prevent the system
from diverging. In this case, the algorithm returns the hedividual from the population

when the maximum number of generations has passed.

Case Study
The validation of the algorithm is made by using the algonitio automatically
tune the parameters of the Reliable UDP (RUDP) transpotopod. The objective of the
optimization is to maximize the throughput for end-to-endhenunication under different

conditions of mobility and interference.
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The proposed algorithm performs the parameter optimiaatfdRUDP over a
multi-hop wireless ad hoc network, which is sufficient to derstrate (a) the ability of the
algorithm to optimize the protocol parameters in the preseri interference caused by
other nodes in the network given that the algorithm does eetirio determine the source
of interference and (b) the effectiveness of the algoritliverythat the objective of the
proposed optimization is to improve the protocol perforoeand not the overall
performance of the network.

RUDP is a simple but flexible transport protocol designediap®rt applications
that require reliable in-order transport of packets (Bdrajoruchka, & Cisco Systems,
1999). In terms of implementation, this protocol is lesshssficated than TCP but
provides a minimal set of QoS services for network transg&irhilar to other protocols
for ad hoc networking, RUDP has a set of modifiable paraméhtatsan be used to
configure the protocol in response to a variety of conditiaiswing applications to
satisfy different QoS requirements.

More precisely, RUDP is a simple connection-oriented arakgbased transport
protocol originally designed to support transport of teleenunication signaling
protocols across IP networks. This UDP-based protocoligesva set of QoS
enhancements that allow a variety of applications to mairg@good quality stream
without the overhead of more sophisticated transport pa$y even in the presence of
severe network congestion or packet losses caused by llokefa Similar to TCP, RUDP
provides reliable in-order packet delivery, as well as d#siv control, error detection,
and keep-alive mechanisms. Additionally, RUDP allows tharacteristics of each
connection to be individually configured so that applicasiovith different transport
requirements can adapt themselves to the operating conslitif the network.

RUDP uses sequence numbers to guarantee in-order deliveiy three-way

handshake to synchronize sequence numbers between tveo Pésen a connection is
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first opened, each peer randomly chooses a sequence nunddacements it before
sending a data packet. Before the connection is fully estadyd, both peers negotiate a
set of parameters that includes (a) the maximum segment(bijzdne maximum number
of unacknowledged segments, and (c) the maximum numbegoieats that can be
received out of sequence. The last two parameters are useth@an of flow control,
whereas the maximum segment size indicates the maximunofsizsingle RUDP
segment or data packet.

Moreover, the protocol specifies two types of segments to@eledge received
data packets. The first type is the ACK segment, which is us@adknowledge segments
that were received in order. The second type, called ExteA@K (EACK), is used to
acknowledge segments that were received out of sequendiiokdlly, data packets may
also be acknowledged by piggybacking its sequence numliiee ineader of a segment
that the receiver sends to the transmitter.

RUDP provides active and passive keep-alive mechanisnmesadtive keep-alive
mechanism consists of periodic transmissions of null (girgegments if no data
segments are being transmitted, whereas the passive keepiachanism makes use of a
counter to keep track of how many times a packet has beemsetitied. The connection
is considered broken if the receiver’s null segment timeguires or the retransmission
count for a data packet exceeds its maximum.

Bova et al. (1999) define the following protocol parameters:

1. Maximum segment sizk specifies the maximum size for an RUDP segment or

data packet, including the length of the RUDP header. Thid vahge for the
value of this parameter is 0 to 65,535.
2. Maximum number of outstanding segmeiitspecifies how many packets can

be transmitted without getting an acknowledgment. Thedvalhge is 1 to 255.
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3. Maximum number of retransmissiontspecifies the maximum number of
consecutive retransmissions of a packet that will be attedhipefore a
connection is considered broken. The valid range is 0 to 25&lue of 0
indicates that the sender will continue to retransmit thekpaforever.

4. Maximum number of cumulative acknowledgemdhtpecifies the maximum
number of packet acknowledgements that will be accumulaééale sending
an ACK or EACK. The valid range is 0 to 255. A value of 0 indicatkat an
acknowledgment must be sent immediately after a data peackateived.

5. Maximum number of out of sequence packitspecifies the maximum number
of out of sequence packets that will be accumulated beforgisg an EACK
segment. The valid range for this value is 0 to 255. A value iofdicates an
EACK segment will be sent immediately if an out of sequenazkphis
received.

6. Null segment timeoutt specifies the number of milliseconds a sender must
wait before sending a null segment if another segment iserdt 3he valid
range is 0 to 65,535.

7. Retransmission timeoult specifies the number of milliseconds a sender must
wait before retransmitting a packet that has not been aclkeuged. The valid
range is 100 to 65,535.

8. Cumulative acknowledgement timedtspecifies the number of milliseconds a
receiver must wait before sending an acknowledgment segfreerother
segment is not sent. The valid range is 100 to 65,535, bubiildhbe smaller
than the value of the retransmission timeout.

An object-oriented implementation of the protocol was digwed in Java as there

was not a public reference implementation available atttivet. This open-source

implementation (Granados, 2009) is available for downlaad
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https://sourceforge.net/projects/rudne original degn of the protocol has been

changed to simplify its implementation and provide capabilities that make possible its
integration with the Java Networking ARIgva Networking Overviem.d.) and the

proposed optimization algorithm. The modifications and additions to the protocol include
the following:

1. Support for error detection. In its original design, the protocol ensures data
integrity by calculating a checksum on the header and body of the packet;
however, the data integrity check performed at the UDP layer should be
sufficient to guarantee a normal operation of the protocol. Therefore, error
detection was not implemented.

2. Support for redundant connections. When a connection fails, applications using
RUDP can initiate the transfer of the state of the connection to another
connection and resume transmission ensuring that packets are not duplicated or
lost. Although having support for redundant connections is an interesting
feature, it was not considered as it makes the implementation unnecessarily
complex.

3. Support for auto reset of active connections. Either side of an RUDP connection
can initiate an auto reset when the number of retransmissions exceeds a
maximum value. In the event of an auto reset, both peers reset their states,
renegotiate the connection parameters, and then resume normal transmission of
packets. Auto reset was partially implemented and can only be initiated by the
application to renegotiate parameters on active connections, preventing the
application from sending new packets until all previously accepted packets are
delivered and the connection is reopened.

4. Support for connection monitoring. The original protocol was extended to

provide monitoring capabilities. Essentially, the protocol can be configured to
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monitor the rate at which the sender is transmitting datata@date at which
the receiver is receiving data. This information is sharetvieen peers and is
also exposed to higher level applications so that decisiande made
regarding the adjustment of the protocol parameters tefgativariety of QoS
requirements.

. Support for Java API integration. The original specifmabf RUDP makes a
clear distinction between client and server connectioash @f them having a
different behavior. This implementation of the protocabyides a mechanism
by which each side of the connection behaves in the same mastiee other
peer. In this case, a peer assumes the role of a client byebctipening the
connection, whereas the peer assuming the role of a semferips the passive
opening. This modification to the protocol makes possibdaiegration with
the Java Networking API so that RUDP sockets can be usedoesrstly by

existing Java applications.

33



CHAPTER IV
EXPERIMENTS AND ANALYSIS OF RESULTS
Experiments were run to measure the performance of RUDP Iti-hap wireless
networks. Also, experiments were run to evaluate the effeness of the proposed
algorithm for optimizing the parameters of RUDP in order taximize the throughput for
end-to-end transport over multiple hops. The descriptidh@experiments and the

analysis of the results are presented in the next two section

Experimental Setup
The validation of the proposed algorithm was made over anaion testbed
developed at the Institute for Human and Machine Cognifidns testbed uses theoretical
models to simulate the radio and interference signals trabe found in wireless
networks. Nodes were configured and used to emulate differahi-hop wireless

communication paths (Figure 8).

Figure 8. Emulated wireless network. There is a maximum of 8 hops (finohe 1 to
node 9). Circles indicate the transmission range of a node.
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For each multi-hop path, nodes were positioned to form atbpelogy with a
separation of 50 meters between nodes. The transmissioer dwach node was set to
6.5 milliwatts to provide a transmission range of approxeha75 meters using the Free
Space radio propagation model. With this configurationgsatbuld only communicate
directly with its immediate neighbors and indirectly (tbgh packet forwarding) with
nodes that were more than one hop away.

The testbed was configured to use a basic interference mataeldmputes the
interference at nodd based on the sum of all the simultaneous transmissionsahelhy
but are not targeted to node Additionally, the capacity of all links was limited to 11
megabits per second, the rate of a IEEE 802.11b wirelesnetwor each evaluation,
the same propagation and interference models were useducecthat differences in the
performance of RUDP were due solely to different paramediing)s. Additionally, in
some scenarios, multiple experiments were run in parajisegmenting the line topology
into shorter multi-hop paths, ensuring that the nodes oh eatwork segment could not
interfere with nodes from other segments.

The RUDP parameters considered for optimization consi@)ainaximum
number of outstanding segments, (b) maximum number of catimalacknowledgements,
(c) maximum number of packets received out of sequence,drrétfansmission timeout.
The valid range for the value of the first three parameters[&s. . ., 8] whereas the
valid range for the retransmission timeout W280, 400,. . ., 1,000, generating a search
space that consisted of 8-8-5= 2,560 parameter sets.

At each node, a Java server process was listening for RUDiRections on the
(emulated) wireless interface. In order to establish a eotion with the server process, a
client RUDP socket had to actively initiate the connectiod aegotiate its initial
parameters. After a connection was established, the &eommection handler would

start reading bytes continuously until signaled to gralbetiiose the connection.
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An initial experiment consisted of measuring the maximurmtlghput that can be
achieved by RUDP when using the recommended parametergsetRUDP was
originally designed as a reliable transport mechanismei@cbmmunication signaling,
which does not require high throughput. Therefore, themenended parameter settings
for RUDP were proposed to provide the minimal QoS capaédifor signaling protocols
requiring transport. Thus, a second experiment considtachaing an exhaustive search
over the 2,560 parameter sets to find the best configuratrahéaiven scenario and
network operating conditions from 1 to 8 hops. The main dbjes of this experiment
were to determine if the parameters of the RUDP protocoldbaloptimized for
throughput and to use the results as a baseline for compdwengerformance of GATO
over the same search space. The rest of the experiments esgned to analyze the
performance and effectiveness of GATO for optimizing tlyloput over 2, 4, and 8 hops
in static and dynamic environments.

In all runs, GATO was configured to use a tournament size of 8@mumber of
individuals in the population. On the other hand, the sizehefelite group at each
generation was 5% the size of the population. Addition#lg, maximum number of
generations was 100. Finally, GATO was also configured tormehe best individual of
the current population if no better solution could be fouftdrathree consecutive

generations.

Preliminary Analysis
The RUDP draft specifies the recommended values for eaclegirtitocol
settings. In particular, the default values for the maxinmumber of outstanding
segments, maximum number of cumulative acknowledgemeatsimum number of
packets received out of sequence, and retransmissionuirae® 3, 3, 3, and 600 ms,

respectively. Hence, the first consideration was to idgiftiin comparison with the
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default configuration, optimizing the protocol paramet&s significantly increase the
overall throughput of the protocol. In this preliminary &sas, an experiment was
conducted to determine the maximum throughput that can hiesex by using the
recommended RUDP settings and to identify the level of imenoent that can be

achieved by modifying the protocol parameters (Figure 9).

& Default Settings “®~ Optimal Settings
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Figure 9. Maximum throughput achieved by the Reliable User DatagrestoBol from 1
to 8 hops.

The exhaustive search results show that there was at leasebof parameter
values that could significantly increase the throughput@bDR over multiple hops. By
modifying the parameter settings, the average throughgaiBhmaximum improvement
between 650% (8 hops) and 930% (1 hop) when compared to thegavéhroughput that
was achieved using the default configuration.

For example, in a 2-hop scenario, the protocol achieved arage throughput of
11.03 kilobytes per second (KB/s; SD = 3.68) using the défaarlameter values, whereas
the average throughput increased to 137.94 KB/s (SD = 1Wfhéh using the best
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configuration that was found during the exhaustive searchaf 8-hop scenario, the
protocol achieved an average throughput of 3.44 KB/s (SC89)using the default
parameter values, whereas the average throughput indrea26.81 KB/s (SD = 13.08)
using the optimum configuration.

It can be observed also that the overall throughput decdesspackets were
transmitted over longer paths. This reduction in perforoeazan be explained by the
increase in packet drops resulting from the interferencs@ad by packet retransmissions
at each intermediate node. However, with an alpha level=faDall statistical tests, the
difference between average throughputs for a 2-hop saewas statistically significant,
t(58) = 64.66, p < .0001. In the case of the 8-hop scenario, the difference tegtwe
average throughputs was also statistically signifidd68) = 9.34, p < 0.0001.

These results verify the hypothesis that the protocol perémce can be improved
by tuning the protocol parameter values. Thus, these pirgdimy results are used to
evaluate the effectiveness and performance of GATO ovesdahee reduced problem
space. In the validation of GATO, a 2-hop static path and fadjmun sizes of 10, 30, 60,
and 120 individuals were considered.

Optimizing the parameter values of RUDP using GATO showtimaproposed
algorithm found sets of parameter values that allowed tb&opol to achieve, in all cases,
an average throughput that was statistically equivaletité@verage throughput obtained

with an optimal protocol configuration (Figure 10).
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Figure 10.Maximum throughput achieved by the Reliable User DatagrestoEol over 2
hops when using the parameter values found by the Genetariigh for Transport
Optimization. The horizontal line indicates the averagaimam throughput when using
the optimal configuration.

However, it can be observed that the variance of the averagaghput increased
for the cases where the GA was initialized with a random patjoart of 10 and
30 individuals (Figure 11). These results show that therélyo tends to find more local
optima when the size of the population is small because thetgeoperators are unable
to prevent the algorithm from converging too rapidly. If #ize of the population is

larger, the algorithm may find better solutions but at the oba slower convergence.
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Consequently, if carefully chosen, a given population sizg provide good solutions in a

reasonable amount of time.
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Figure 11.Standard deviation of the throughput achieved by the Rielidser Datagram
Protocol over 2 hops when using the parameter values foutiteb@enetic Algorithm for
Transport Optimization. The horizontal line indicates skendard deviation of the
maximum throughput when using the optimal configuration.

Based on these assumptions, a population size of 50 in@dildinould be
sufficient to optimize the parameter values of RUDP in congparwith the results

obtained from the exhaustive search.

Simulation Results and Discussion
The proposed GA is designed to optimize end-to-end trahsphbich means that
GATO adjusts the protocol’s parameters and monitors itopmance at the sender and
receiver end-points, respectively. Simulation resultsisthat GATO is capable of
optimizing the parameter values of RUDP over longer comgation paths, without

increasing the cost of the optimization task.

40



Results show, for example, that the algorithm’s convergédimge for both 4-hop
and 8-hop static paths, with a population of 50 individukigre 12), was approximately
27 min (1620 s). However, in the process of searching for gienal configuration, the

algorithm always tended to improve the throughput of thequol.
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Figure 12.0nline optimization of the Reliable User Datagram Protamihg the Genetic
Algorithm for Transport Optimization over 4 and 8 hops. Tlegtical line indicates the
time at which the algorithm converged.
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This tendency to gradually improve the performance of tliéqmol means that the
algorithm does not require, for example, 27 min of contirautvaffic. Moreover, if the
state of the current population is maintained across naltipws, the algorithm could
also gradually improve the overall performance of the prokbecause, as long as packets
are sent, the evolution of individuals continues until atirmpm solution is found.

Highlighted by these experimental results, the main sbantng of GATO is the
time that the algorithm takes to converge. The fitness fonatf the algorithm adjusts the
protocol’s parameters based on the parameter values ehbgdke individual. Then, it
monitors the performance of the protocol by sampling theubhput at the receiver
end-point. However, this sampling must be performed ovearag of time that is
sufficient enough to ensure the accuracy of the throughpim&son. As a result, the cost

of the fitness function significantly increases the overathing time of the algorithm.

Improving the Efficiency of the Optimization Algorithm

There are several approaches that could lead to an impronerhihe algorithm’s
performance. A first approach could be to assign to new offgghe same fitness value
of a similar or identical individual found in the populatiomhich prevents GATO from
performing a new fitness evaluation. However, because afripesdictability in wireless
communications and the characteristics of the proposegsitfunction, throughput
estimations at a given time can vary significantly even wihenprotocol’s parameters are
not modified. Hence, when a good individual is evaluated éngiresence of higher packet
drop rates, subsequent similar or identical individual§lva assigned the same bad
fitness value even under normal operating conditions. Agsipthe same values could
cause the algorithm to converge to local optima and nevetlfi@dlobal optimal solution.

A second approach could be to dynamically adjust the sizkeopopulation to

reduce the number of evaluations. More precisely, the algoridentifies similar or
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identical individuals and generates populations thatistéef just uniqgue members. In
this case, only the best member of a group of similar indi@idsurvives and passes to the
next generation. The advantage of this approach is thall akdws for repeated
evaluations of individuals that are alike. These repeatatiiations helps GATO to
recognize individuals that may have had bad fithess valupseirious evaluations, but

that in the long term are actually good individuals.

Finally, a third approach could be to reduce the time thatkies to evaluate an
individual by sampling the throughput of the protocol athegrates, in a shorter period of
time. Reducing the sampling time could make the fitness atialu more sensitive to
bursts in traffic, increasing the variance of the estimatedage throughput. Throughput
estimations at shorter intervals can be performed acduifeconstant and sufficient
rate of bytes is transmitted during the sampling time.

A variation of GATO that reduces the time for fithess assessiared dynamically
adjusts the size of the population shows a significant réasluat the overall execution
time. This variation of the algorithm, called Adaptive-GATalso converges to
statistically equivalent solutions as the original alfon. Adaptive-GATO computes a
degree of similarity between individuals to identify unégonembers in the population.
Given two individuals, the algorithm measures the distdretereen their two parameter
vectors by calculating, for each pair of corresponding peater values, the number of
incremental steps that are required to transform a valoetlia other one. Then, the
algorithm calculates a normalized distance between thevégtors by dividing the sum of
all the parameter distances by the maximum possible dista@tween any two
individuals. A value in the rang® — 1] determines how similar the individuals are. Two
individuals are identical if the degree of similarity is edjto 0, and they are completely

different if the degree of similarity is equal to 1.
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A performance comparison between GATO and Adaptive-GATiguie 13),
shows that, similarly to GATO, Adaptive-GATO converged teadution statistically
equivalent to the optimal solution found by the exhaustaersh. However,
Adaptive-GATO required fewer fitness evaluations, whidtueed the time needed for the
optimization task. For example, in the scenario where AdagBATO was initialized
with a random population of 60 individuals, the algorithmqueed, in average, 28% fewer
evaluations than GATO, which reduced the average exectitienby 58.33%, from
24 min (1440 s) to 10 min (600 s).
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Figure 13.Performance comparison of the Genetic Algorithm for Trams@ptimization
(GATO) and its adaptive version (Adaptive-GATO) over a Zipath, using population
sizes of 10, 30, 60, and 120 individuals.
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Adaptive-GATO gave the same results in the 4-hop and 8-hepas®s that were
used to evaluate the performance of GATO (Figure 14). Howéve execution times of
Adaptive-GATO were shorter than the execution times of GAEOause of the dynamic
resizing of the population, which reduces the number of $grevaluations that are

performed at each iteration.
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Figure 14.0nline optimization of a flow using the Adaptive Genetic Aliglom for
Transport Optimization over 4 and 8 hops. The vertical limd#idates the time at which the
algorithm converged.
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Because Adaptive-GATO adjusts the size of the populaticedan the diversity
of the individuals and how they evolve, the number of fithesduations can vary between
executions, independently of the number of hops. For exanpthe case of the 4-hop
scenario, the algorithm took approximately 10 min (600 s)doverge, whereas in the
8-hop scenario, the algorithm needed fewer evaluationganderged in 8.5 min (510 s).

When compared to GATO, Adaptive-GATO requires significalgss time to
converge and reduces the variance of the achieved throtghoause the algorithm
gradually reduces the size of the population by eliminasingjlar individuals (Figure 15).
This reduction increases the probability of individualshahigher fithness values to be
chosen as parents, shrinking the size of the sample spaeeevdn if the size of the
population is greatly reduced, Adaptive-GATO may conveggecal optimum since the
time that the algorithm takes to find the sub-optimal solutgonot enough to diversify the
population and explore other regions of the search spacesvidetter solutions may be

found.

=== GATO — Adaptive-GATO
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Figure 15.0nline optimization comparison of the Genetic Algorithm Tsansport
Optimization (GATO) and its adaptive version (Adaptive-I3# over a 4-hop path (using
averaged data points to facilitate readability).
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Online Adaptation to Network Conditions
When the conditions of the network change, the algorithnisée be restarted to
optimize the parameter values to adapt the protocol to theseconditions. Two tests
were conducted to verify that the algorithm can dynamicadljusts the parameter values
of the protocol to provide maximum throughput when netwarditions change. In
these experiments, two additional nodes were added to thiagsd wireless network to

create secondary flows that interfered with the flow targé&iedptimization (Figure 16) .

(a) Emulated wireless network topology.

A

B

(b) A flow going from node 1 to node 9.

(c) A secondary flow going from node A to node B.

Figure 16.Another emulated wireless network with two additional read& secondary
connection interferes with the existing flow going througé 8-hop path.
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For each test, an RUDP connection was opened between nodd91 &hen,
after the flow going through this first connection was optexizanother connection was
opened between nodes A and B to interfere with the existing fliggering a second run
of the optimization algorithm.

In the first test, the secondary flow increased the inducedfarence over the flow
targeted for optimization, reducing the throughput of th&raized connection by 58%.
The change of operating conditions and the reduction offttaighput triggered a new
optimization task. Results show that Adaptive-GATO immdvthe performance of the
protocol in the presence of higher packet drops caused byndlieed interference

(Figure 17). The average throughput increased by 40%, frémt® 14.36 KB/s.
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Figure 17.Dynamic online optimization of a flow over an 8-hop path. Atdi 780
(vertical line), a secondary flow is started from node A toa8dinterfering with the
optimized flow and triggering a new optimization task.

Each time the optimization algorithm is restarted, a newutettpon of purely
random individuals is generated. However, it is possikée the time to converge could be

reduced by inserting into the initial population a groupradividuals that are known to
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improve the performance of the protocol. This group of imdlinals could be, for example,
the elite group of the last generation from a previous rurhefalgorithm.

In the second test, the secondary flow that also increasedtdréerence after the
algorithm had already performed the optimization task. Wihe protocol detected a
degradation in the performance of the initial connectibe,dlgorithm was restarted using
a population that contained 40 random individuals and thieeld individuals of the
previous run (Figure 18). In this case, results show thatp#ide-GATO improved the

performance of the protocol by 37%, and the time to conver@eneduced by 14%.
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Figure 18.Dynamic online optimization of a flow over an 8-hop path usangredefined

initial population. At time 700 (vertical line), a secongdiow is started from node A to
node B, interfering with the optimized flow and triggeringemnoptimization task. The

elite group of individuals from the previous run was inseiitgo the initial population of
the next run of the optimization algorithm.

When comparing to the case where the initial population efaligorithm was
comprised of purely random individuals, using the previelite group of individuals did
not have a significant effect in the convergence time of tgerdghm (Figure 19).

Although, assuming that the optimal configurations of sivatiations in the operating
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conditions are located close to each other in the searcle sihas heuristic could provide

a rapid recovery when there are small changes in the conditibthe network.

== Random —Elite + Random
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Figure 19.Comparison of a dynamic online optimization of a flow over amo® path
(using averaged data points to facilitate readability)eAth restart of the algorithm, the
initial population was comprised of either purely randomiwduals (Random) or a
combination of random individuals and the elite member$effdrevious run of the
algorithm (Elite + Random).

On the other hand, if the configuration that was obtainederptievious run of the
algorithm is located far away in the search space from thiengppsolution given the new
conditions, then using the best individuals from the presioun may cause a premature
convergence to local optima or increase the convergeneedince more generations

would be needed to diversify the initial population of indwvals.
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CHAPTER V
CONCLUSIONS

In mobile ad hoc networks, the variation of link charactisssand frequent and
unexpected changes in topology greatly decreases thamperice of commonly used
transport protocols. Transport protocols usually have afsmodifiable parameters that
can be adjusted to provide better performance for spec#icas@s, although they are
usually fixed and rarely changed after the protocol has beploged. Because the
connectivity and operating conditions in wireless netvgar&nnot be predicted during the
network design stage, the problem of tuning the parametéhegrotocol becomes an
important and difficult one.

The experimental results demonstrate the feasibility tdmatic parameter tuning
for transport protocols based on GAs. They show that theqeeg algorithm was able to
optimize the parameters of a transport protocol to maxinhir@ughput for end-to-end
communication over multiple hops. The algorithm requireknowledge of the
characteristics of the network and can optimize for diffiéscenarios as long as the
following two conditions are met.

First, the rate of bytes transmitted must be sufficient ehdagnduce detectable
variations in performance when parameters are modifieéyoike the algorithm is
unable to distinguish between good sets and bad sets of pegenAnd second, the rate
of changes in network conditions must be slower than the tiraalgorithm requires to
converge. Even if the network conditions change fasteralfperithm can still optimize as

it always tends to gradually improve the performance of tiweqzol.
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In the real world, an optimization time in the order of mimiig not practical for
MANETS, especially when there are frequent changes in tapolThe use of heuristics
can help reduce the convergence time of a GA to make it motaldeifor dynamic
environments. However, the effectiveness of such hecsigitightly related to the
characteristics of the problem and the design of the GA.

For example, the results show that for the considered siospatiowing only
unique individuals to survive helped the adaptive algamitb converge much faster than
the implementation of GATO working with populations of ctar#t size. To dynamically
adjust the size of the population, Adaptive-GATO used aeegf similarity between
individuals based on a distance metric between correspgmdirameter values, assuming
that resembling individuals would have similar fitness. ldwar, depending on the type
and range of possible values, short distances between ptaenao not always indicate a
similarity between individuals, and the heuristic woulduk ineffective in these cases.

Even though heuristics can speed up the execution time of al&Aost of the
fithess function still constitutes a major challenge fot-teae optimization of transport
protocols. As an alternative, GAs can quickly provide submal solutions that could
allow protocols to satisfy more flexible QoS requirements. iRstance, a stopping
criteria could be specified so that the GA would return the $ies of parameters that
provides a minimum desired throughput given the currentaipe conditions.

Another challenge for real-time optimization of transgatocols using GAs is
that the fitness evaluation of the same set of parametersehay different values over
multiple runs. This inconsistency is a result of the vaoiatf link characteristics at the
time the evaluation is performed. If the operating condiichange quite often, the
algorithm may never converge to an optimal solution becéuwsmnot refine the

characteristics of the best individuals in the population.
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However, elitism is shown to be useful on retaining the hedividuals so that
they can be tested again and thus, over time, gain incrdgselble fithess estimates
when the fitness function is noisy. Moreover, in the preserficeall amounts of noise,
the accumulation of fitness statistics over multiple runthefalgorithm may help the GA
to recover quickly from changes in the conditions of the mekyalthough the inclusion
of good individuals in the initial population can be ineffige if the optimal configuration
of the protocol is located far away in the search space frawipusly found solutions.

Despite the difficulties associated with performing onlapdéimization using GAs,
the proposed algorithm was effective at improving the penence of the transport
protocol for multi-hop scenarios. Also, even though thecexien time of GATO prevents
it from quickly adapting itself to changes in the operatiogditions of the network, the
use of problem specific heuristics can help GATO to furthduoe the time required for a

single optimization task in order to provide better perfanoe over dynamic MANETS.
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