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ABSTRACT

A GENETIC ALGORITHM FOR NETWORK TRANSPORT PROTOCOL
PARAMETER OPTIMIZATION

Adrián Granados Murillo

The fields of wireless communications and mobile networkingare rapidly growing

and changing. In a mobile ad hoc network, the variation of link characteristics, and

frequent and unexpected changes in topology, decreases theperformance of commonly

used transport protocols, which assume that packet drops occur only in the event of

network congestion. Link failure and higher bit error ratesmay also induce a sudden

increase of packet losses, triggering the activation of congestion avoidance mechanisms

that reduce the overall transmission rate.

In general, a transport protocol has numerous configurationparameters (e.g.

window size, retransmission timeout, etc.) that can be adjusted to compensate for these

environment effects. Thus, the challenge is to identify what is the best configuration (i.e.

combination of parameter values) for a given scenario.

In this work, an optimization approach based on genetic algorithms is used to

automatically tune, in real time, the parameter values of a transport protocol so that it can

adapt itself to different operating conditions. When compared to an exhaustive search over

a reduced problem space, the experimental results show thatthe proposed algorithm can

identify the optimal configuration settings to maximize throughput for end-to-end wireless

communication over multiple hops.
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INTRODUCTION

The fields of wireless communications and mobile networkingare rapidly growing

and changing. Mobile ad hoc networks (MANETs) are of great interest for military and

rescue applications where an easy and quick deployment of a communication

infrastructure is required to support the operations in thebattlefield or disaster area. More

recently, advances in wireless technologies have led to an increasing popularity of

MANETs in other areas of application such as home and office networking, industry, and

person-to-person communication. In a MANET, wireless nodes can freely move to

organize arbitrary, and temporary network topologies, building an ad hoc communication

infrastructure. Compared to wired networks, where nodes have fixed locations and

topologies are static, MANET topologies are quite dynamic;therefore, operating

conditions cannot be predicted during the network design stage. Sudden and rapid

changes in topology can occur as a results of the movement of one or more nodes, signal

interference, power failure, and other important factors (Aggelou, 2005). As a result,

frequent and unexpected node disconnections and path disruptions are common in

MANETs.

In general, the use of protocols for wired networks has been adopted for mobile

wireless networking. However, it has been demonstrated that the unpredictable movement

of nodes and the nature of wireless communication technology greatly decreases the

performance of commonly used network protocols (Calagaz, Chatam, Eoff, & Hamilton,

2004; Elaarag, 2002; Li, Qiu, Zhang, Mahajan, & Rozner, 2008). The lack of adaptability

and a design based on assumptions that are only valid for fixednetwork topologies prevent

these protocols from having the same performance that is achieved in wired networks. In
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particular, the Transmission Control Protocol (TCP) does not perform as well in MANETs

as it does in fixed networks (Calagaz et al., 2004; Elaarag, 2002; Gurtov & Floyd, 2004;

Mulabegovic, Schonfeld, & Ansari, 2002).

Normally, protocols for fixed networks are configured and evaluated for generic

environments. In addition, once protocols are deployed, they require few or no

adjustments because operating conditions in this type of network rarely vary. Moreover,

the main assumption in the operation of transport protocolsis that adverse conditions, if

any, will occur only in the event of network congestion (Gurtov & Floyd, 2004). When

congestion occurs, packet drops increase, and transport protocols immediately activate

flow control mechanisms to significantly reduce the transmission rate to revert the

congestion condition.

In the case of wireless networks, link failure or higher bit error rates produce an

increase in the number of packet losses, activating the samemechanisms for congestion

avoidance. As a result, protocols unnecessarily and immediately decrease the transmission

rate. For this reason, frequent and significant variations in link characteristics have a great

impact on the performance of transport protocols in MANETs.

Transport protocols for ad hoc networking need to continuously adapt in order to

satisfy the Quality of Service (QoS) requirements of higher-level applications and improve

the performance in wireless networks. This continuous adaptation can be accomplished by

(a) modifying existing protocols to make them aware of the changes in network conditions

that are not related to congestion, or (b) designing protocols that are optimized for

wireless networks. These two approaches usually result in protocols that are characterized

for having a number of modifiable parameters that still need to be tuned to satisfy the QoS

requirements of higher level applications, which often have a need for a network that is

optimized along certain characteristics such as reliability, delay, power consumption, or
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overhead. However, the task of manually tuning and identifying sets of optimal (or

near-optimal) protocol parameter values is combinatorialin nature and not practical.

In this work, a genetic algorithm (GA) is used to automatically tune the parameter

values of a transport protocol. The main objective of the proposed algorithm is to optimize

the protocol to improve its performance based on one of several potential QoS metrics

such as number of retransmissions, transmission delay, andthroughput.

A GA is a heuristic search method inspired in Darwin’s theoryof evolution where

populations of individuals compete and only the fittest survive. GAs incorporate the

biological principle of natural evolution and genetics to artificial systems and have been

successfully applied to numerous problems, including automatic programming, machine

learning, economics, social systems, population genetics, and others (Mitchell, 1996).

More importantly, GAs are considered to have a surprising potential as adaptive

search techniques to solve optimization problems because GAs can quickly explore an

extensive search space, and are highly effective in the presence of noise (Russell &

Norvig, 2002). Additionally, GAs have been shown to be successful at finding solutions or

optimizations for complex and difficult problems for which traditional search methods are

less effective. However, in addition to advantages, GAs also have disadvantages. Their

main drawback is their tendency to prematurely converge to alocal optimum. This

premature convergence occurs when an individual, who is more fit than others at early

stages, dominates on the reproduction process and leads to alocal optimum convergence,

preventing the algorithm to perform a more systematic search that could lead to a global

optimum. Another disadvantage of GAs is the time they may take to find a possible

solution, which depends on the computational complexity ofthe function that evaluates

the fitness of an individual. Nevertheless, different strategies for genetic code

manipulation and approaches for parallel execution have been proposed to avoid the

premature convergence problem and other disadvantages of GAs (Mitchell, 1996).
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Despite their shortcomings, GAs have been successfully applied to optimization

problems in MANETs by exploiting their ability to quickly provide good solutions in

highly dynamic contexts (Barolli, Koyama, & Shiratori, 2003; Montana & Redi, 2005;

Turgut, Das, Elmasri, & Turgut, 2002), demonstrating that GAs can be used effectively for

complex problems in the field of wireless networks, a field where finding estimate

solutions would be otherwise impossible or difficult to achieve.

This document is organized as follows. Chapter 1 characterizes the effects that

wireless communications have on network transport protocol performance and the

different proposals that can been found in the literature that aim to improve the

performance of transport protocols in wireless networks. Chapters 2 and 3 describe the

thesis proposal, technical approach, and optimization algorithm. Chapter 4 presents the

experimental setup and the analysis of results that demonstrate the feasibility of transport

protocol parameter optimization using GAs. Finally, Chapter 5 discusses the advantages,

disadvantages, and limitations of the proposed optimization algorithm.
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CHAPTER I

LITERATURE REVIEW

The literature review can be classified into two distinct categories. The first

category consists of research work that illustrates the effects that wireless communications

have on the performance of network transport protocols. Thesecond category consists of

proposals that aim to improve the performance of these protocols over MANETs. A

complete survey of this large body of work is beyond the scopeof this chapter; results that

directly impact this research work are summarized.

Transport Protocol Performance

Various authors have investigated the causes of performance degradation that is

experienced by transport protocols in wireless networks. Much of the previous research

studies have been focused in the analysis of the effects thatwireless environments have on

TCP, a protocol vastly used in wired networks and the Internet. TCP is a

connection-oriented protocol that provides reliable and in-order packet delivery

(Information Sciences Institute, 1981; Tanenbaum, 2002).This protocol can adapt itself to

different network conditions using mechanisms for flow control that are triggered when

packet drops are detected. The flow control algorithms foundin several TCP

implementations were designed under the assumption that packet drops occur only in the

event of network congestion and not as a result of damaged packets, given that bit errors

in wired networks were and are still practically negligible.

Nevertheless, packet drops in MANETs not only occur from network congestion

but also from higher bit error rates, link failures, limitedand variable bandwidth, and node

mobility. In wireless networks, higher bit error rates produce a higher number of damaged
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data and acknowledgment packets, whereas node movement andpower failure may cause

periodic disconnections of mobile nodes. According to researchers, the most important

cause for TCP performance degradation in MANETs is the TCP sender’s inability to

distinguish packet losses that are due to congestion from those that occur when the link

fails (Aggelou, 2005; Calagaz et al., 2004; Elaarag, 2002; Holland & Vaidya, 2002;

Xylomenos, Polyzos, Mahonen, & Saaranen, 2001).

In general, TCP activates its congestion control mechanisms when packet losses

are detected, reducing the number of outgoing packets with the goal to stabilize the state

of the flow. However, TCP also activates these mechanisms when a link or route fails and

packets are dropped, unnecessarily reducing the flow of packets even after links and routes

are reestablished (Lochert, Scheuermann, & Mauve, 2007). This behavior results in

immediate and undesired performance degradation in the presence of node mobility, bit

errors, power failure, and network handoff (Gurtov & Floyd,2004; Xylomenos et al.,

2001).

Mechanisms to provide the TCP sender with information aboutlink and route

failures can significantly improve the performance of TCP (Holland & Vaidya, 2002). For

example, by monitoring explicit congestion notification (ECN) or ICMP (Internet Control

Message Protocol) destination unreachable messages, TCP can determine that detected

packet drops are caused by link failures and are not a result of network congestion.

Interference is also an important cause of performance degradation in wireless

networks (Al Hanbali, Altman, & Nain, 2005; ElRakabawy, Klemm, & Lindemann, 2005;

Fu et al., 2005; Jain, Padhye, Padmanabhan, & Qiu, 2003). Even in the presence of a

single TCP flow, the successive transmission of packets at intermediate nodes, through a

multi-hop path, interferes with each other as packets move toward the destination

(Figure 1). Protocol performance degrades as the number of hops traversed increases
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because communication happens over a shared medium and is affected by the induced

interference of hidden (and exposed) nodes.

Figure 1.A network topology with a multi-hop communication path.

In wireless networks, the hidden node problem (Figure 2) refers to a scenario

where a node is out of range from other nodes. For example, consider a scenario with

three nodes. Node A and node C have a packet to transmit to nodeB. Because node C is

outside the transmission range of node A, node C cannot detect node A’s transmission to

node B; node C is hidden from node A. If node A and node C transmit at the same time,

there will be packet collisions at node B. The hidden node problem is partially solved not

at the transport level, but usually at the Medium Access Control (MAC) level by a

two-way handshake that precedes the transmission called virtual carrier sensing

(Tanenbaum, 2002). However, the problem may persist in ad hoc networks because the

range at which a MAC frame can be decoded and successfully received is always shorter

than the range at which a transmission can be detected, henceinterrupting the reception of

virtual carrier sensing messages (Cordeiro & Agrawal, 2006; Fu et al., 2005).
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Figure 2.The hidden node problem scenario. Node C is hidden from node A, causing
collisions at node B if node A and node C transmit at the same time.

Conversely, another effect of interference in wireless ad hoc networks is defined as

the exposed node problem (Figure 3). In this case, node A and node C are within node B’s

transmission range, and node A is outside the transmission range of node C. If node B has

packet to transmit to node A and node C also has a packet to transmit to node D, node B’s

transmission would prevent node C from sending a packet to node D, although this

transmission would not cause interference at node A.

Figure 3.The exposed node problem scenario. Node B’s transmission tonode A prevents
node C from sending packets to node D.

The problems caused by interference are usually addressed by link-layer

mechanisms such as virtual carrier sensing and retransmission of damaged packets.

However, the exchange of messages to perform virtual carrier sensing in the presence of
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multiple nodes and the excessive number of retransmissionsmay indirectly degrade the

performance of higher layer protocols, including transport protocols like TCP.

Related Work

Various proposals to improve the performance of transport protocols in wireless

networks can be found throughout the literature. The characterization of these proposals

made by Al Hanbali et al. (2005) suggests that they can be classified into (a) layered

proposals and (b) cross layer proposals. In layered proposals, the performance of a

transport protocol is improved, directly or indirectly, bythe adaptation of one of the layers

in the network stack. Conversely, cross layer proposals involve two or more layers that

share information through a predefined set of interfaces so that transport protocols can

adapt accordingly to specific network operating conditions.

Many of the proposals found in the literature have focused onadaptations to

improve the performance of the TCP protocol (Calagaz et al.,2004; Elaarag, 2002;

El Khayat, Geurts, & Leduc, 2005; ElRakabawy et al., 2005), although new transport

protocols have also been designed specifically for wirelessnetworks (Akan & Akyildiz,

2004; Mulabegovic et al., 2002; Navaratnam, Cruickshank, &Tafazolli, 2007; Wu & Rao,

2005).

In general, adapting preexisting protocols allows for seamlessly inter-networking

between the wired and the wireless worlds. On the other hand,cross layer based strategies

and transport protocols specifically designed for MANETs are more difficult to

implement. However, they may achieve better results since underlying protocols can work

jointly, allowing the transport protocol to monitor changes in the environment and adapt

itself accordingly.

Each of these proposals attempts to overcome the main causesthat degrade the

performance of TCP in wireless environments, such as high bit error rates, link breakage,

9



limited and variable bandwidth, and interference. However, it is usually the case that these

adaptations do not consider all causes at the same time because of the complexity of the

design and implementation. Therefore, they offer better performance only under very

specific conditions of the network, where environments often lack frequent and sudden

topology changes, multi-hop paths, and induced interference. Also, most of these

adaptations lack mechanisms to dynamically tune protocol parameters in order to optimize

the performance of individual connections based on the current network conditions.

Given the impossibility of transport protocols to globallyaddress all the challenges

arising from the nature of wireless networks, some proposedadaptations focus on the

optimization of protocol parameters to improve the performance under a variety of

scenarios. In general, optimization approaches can be categorized into (a) offline

optimization and (b) online optimization.

Offline Optimization

In offline optimizations, network conditions are known (or assumed), and protocol

parameter tuning is achieved through the simulation of several network configurations for

which one or more optimization algorithms are executed. Thegoal of offline optimization

is to find suitable protocol parameters that can maximize theperformance of the network

when operating under certain predetermined conditions. Inhis work, Suydam (2004)

designed an algorithm based on adaptive simulated annealing to optimize the TCP

segment and receiver window size in a simulated environment. The goal of this proposal

is to maximize the throughput of TCP in real wireless ad-hoc networks. Adaptive

simulated annealing is a variation of simulated annealing,which is a search heuristic used

for large-scale optimization problems (Russell & Norvig, 2002). It is adaptive because the

parameters of the algorithm are automatically adjusted as it progresses, making it more

efficient and less sensitive to user defined parameters. The results obtained in this work
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demonstrated that the proposed offline optimization algorithm provided a significant

increase of the average throughput in ad hoc wireless networks.

El Khayat et al. (2005) proposed an algorithm to classify packet loss causes to

improve the performance of TCP with the objective to achievea better throughput over

wireless links. In their work, the authors applied a supervised learning algorithm to

automatically infer a packet loss cause classifier from a database of 25,000 losses observed

in a thousand simulated random topologies with simulated packet flows. Supervised

learning is a machine learning technique which focuses on identifying a mapping from

some input variables to some output variables from a sample of observations of these

variables (Russell & Norvig, 2002). More precisely, the main goal of supervised learning

is to generalize from training data so as to predict the valueof the output variables when

presented to any valid input set. The classifier constructedby the learning algorithm

provided good accuracy at classifying losses for all the simulated network topologies that

were considered in the experimental analysis and in actual wireless networks.

It is important to note that the main limitation encounteredwith offline

optimization is that optimal protocol settings may be foundonly for the network

conditions that were considered in the simulations. In addition, once optimal settings are

found, they are fixed for all possible scenarios. As a result,a protocol may perform poorly

if network conditions significantly vary from those that were considered during the

simulation.

Online Optimization

In online optimization the network conditions are unknown,and protocol

parameter tuning is achieved through optimizations that are performed dynamically as

conditions change. This type of approach requires a constant observation of the

environment and monitoring of the current protocol performance, which makes online
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optimizations more difficult to implement than offline approaches. Moreover, the online

optimization of protocol settings in MANETs should be made as quickly as possible as

network conditions may change rapidly.

Some online optimizations of network transport protocol parameters based on

heuristic search algorithms can be found in the literature.Rao and Iyengar (2004)

proposed an algorithm to dynamically optimize the size of the window for window-based

transport protocols. The algorithm was designed to monitorthe network conditions and

adjust the sending rate in order to achieve a target throughput rate. It uses stochastic

approximation methods to stabilize the throughput of the transport stream by adjusting the

size of the window if the estimated throughput is above or below a certain threshold.

Stochastic approximation algorithms are heuristic-basedoptimization algorithms that

incorporate probabilistic elements to attempt to estimatethe solution of a problem from

noisy observations. The randomness introduced to the search process aims to speed up the

convergence of the algorithm and to make it less sensitive tothe noise introduced by

modeling or simulation errors (Russell & Norvig, 2002; Ye & Kalyanaraman, 2004).

Wu and Rao (2005) proposed a similar approach called Reliable UDP-based

Network Adaptive Transport (RUNAT). In this approach, a protocol based on the User

Datagram Protocol (UDP) was designed to dynamically control the transmission rate of

the sender based on the statistical behavior of individual connections. The authors defined

three different congestion states for a given connection: underutilized, saturated, and

overloaded. The main goal of RUNAT is to avoid congestion states above or below the

saturated level using a rate control mechanism for interleaving delays between packets.

Once the connection congestion is at the saturated level, the sending rate is statistically

stabilized using stochastic approximation methods to allow the protocol to achieve

maximum throughput.
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The results obtained by Rao and Iyengar (2004) and Wu and Rao (2005)

demonstrated the effectiveness of statistical control methods for throughput stabilization

over wide-area networks under various traffic conditions. However, experiments were not

conducted to verify the effectiveness in throughput stabilization in MANETs, although

these networks seem to be an ideal ground for the proposed algorithms because of the

noisy conditions under which communications are performed.

Akan and Akyildiz (2004) proposed another redesign of a transport protocol

capable of performing online optimization of the protocol parameters. In this case, the

authors designed a new transport layer that incorporated anadaptive congestion control

mechanism to dynamically adjust the AIMD (Additive-Increase, Multiplicative-Decrease)

parameters of the transport protocol. The algorithm uses a guided random search strategy

based on the wireless-related packet loss probability and the one-way wireless link delay,

which are calculated with the help of an underlying adaptiveMAC layer. This layer is

capable of detecting packet losses resulting from access failure, bit-errors, fading and

signal loss caused by network handoff (switching over a different wireless access point).

Thus, the protocol can distinguish correctly between wireless-related and

congestion-related packet losses used to calculate the best AIMD settings given the

conditions of the network. The results obtained in this workshow that the new transport

layer was capable of achieving high performance for heterogeneous wireless networks

under a wide range of packet losses and link delays. However,the implementation of this

algorithm is complex because of the requirements for cross-layer interaction in order to

monitor the conditions of the wireless link.

A different approach for online optimization of network protocol parameters was

suggested by Ye and Kalyanaraman (2001). In their work, theyproposed a hybrid

optimization strategy that uses a simulation component to calculate and dynamically

adjust the settings of the transport protocol. The search component of the algorithm is
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based on random sampling, the simplest and one of the most commonly used randomized

search algorithms. In random sampling, each state in the search space has an equal chance

of being chosen as a possible solution to the problem. The emphasis of the algorithm is

not to find the optimal value for each protocol parameter, butto find better operating

points within a limited time frame to quickly adapt the protocol to new network

conditions. It explores the whole parameter space, but focuses on the optimization of only

those points that fall within a certain region. In order to perform the optimization in a

real-time fashion, the algorithm uses a simulation component that collects real-time data

from the network and runs a simulation based on the current conditions of the network.

The simulation component uses stochastic approximation methods to find better parameter

settings which, once found, are applied back into the network. The test results of the

algorithm indicated that it was efficient and robust to noises on real optimization problems

for TCP flows in wired networks.

In a similar path, Ye and Kalyanaraman (2004) designed a heuristic for an online

network parameter optimization algorithm named RecursiveRandom Search (RSS). The

main goal of the algorithm is to overcome the inefficiencies of random sampling, which

guarantees the convergence to global optima if the space is finite, but becomes inefficient

with many sampling steps and large search spaces (Russell & Norvig, 2002; Ye &

Kalyanaraman, 2004). In order to keep the initial high-efficiency property of random

sampling, the RSS algorithm was designed to constantly restart the sampling over a new

reduced sample space to increase its robustness. Initially, RSS samples the whole

parameter space to inspect the general structure of the optimization problem. Then, it

moves or resizes the sample space accordingly to previous evaluations of the optimization

function and restarts the random sampling to gradually converge to a local optimum. The

exploitation (local) phase of the algorithm is separated into two different sub-phases:

realignment and shrinking. In the realignment sub-phase, the algorithm performs random
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sampling in the neighborhood of a promising pointx, with the assumption that the

algorithm will find a better solution close tox. If the algorithm fails to find a better point,

the shrinking sub-phase takes over to reduce the size of the sample space. This process

continues until the size of the sample space falls below a certain threshold previously

determined by the user and dictated by the requirements of the optimization problem.

Even though tests were not conducted on any network transport protocol, the simulation

results show a substantial improvement in network performance when the algorithm was

applied to different protocols for route and queue management such as OSPF (Open

Shortest Path First) and RED (Random Early Detection).

Most of the proposed offline and online optimization algorithms discussed so far

are known as stochastic search algorithms. A GA is also a stochastic search method that

has been previously applied to various optimization problems in ad hoc networks (Barolli

et al., 2003; Roy & Das, 2004; Turgut et al., 2002), particularly motivated by the fact that

GAs perform much better than other stochastic methods in rugged landscapes (where

many local optima is located far from the global optimum) as the population-based

approach allows GA to efficiently explore more extensive regions of the search space

(Mitchell, 1996).

More precisely, a GA is a search and optimization technique that was invented by

John Holland in the 1960s and inspired by the theory of evolutionary computation.

Evolutionary computation aims to develop artificial systems based on the principles of the

Darwinian evolutionary system, where one or more dynamic populations of individuals

compete for limited resources (De Jong, 2006). A simple evolutionary algorithm consists

of a population of constant size that evolves over time, where each individual in the

population represents a possible solution to a problem. Just like humans, individuals in the

population reproduce to generate children that resemble their parents and diversify the

population. These new individuals can then reproduce themselves, and as the generations
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pass by, the population evolves. To maintain the constant size of the population, the

resulting expanded group of individuals (parents and children) is then reduced to its

original size by following a replacement strategy that selects and discards individuals

based on certain criteria. In general, this cycle repeats until a predefined evolution state is

achieved for one or more individuals, or until a fixed number of iterations have passed.

The central notion of a GA follows the same idea of evolutionary algorithms. In a

GA, states are treated as individuals in a population, each one represented by a finite string

of symbols, known as thegenome, encoding a possible solution in a given problem space.

The evolution process is guided by a fitness function that rates each individual state and

determines its probability of survival and reproduction, simulating Darwin’s theory of the

survival of the fittest during the evolution of species. Consequently, high-fitness

individuals stand a better chance of passing to the next generation and reproducing, while

low-fitness ones are more likely to disappear, obtaining approximate solutions that are

closer to the problem’s optimal solution (Russell & Norvig,2002; Sipper, 1996).

The success of a GA depends on the problem representation (encoding) and the

genetic operators: (a) selection, (b) crossover, and (c) mutation (Michalewicz, Eiben, &

Hinterding, 1999; Vasconcelos, Ramirez, Takahashi, & Saldanha, 2001). In the general

case, the selection operation dictates which pairs of individuals are chosen to participate in

the reproduction process, whereas crossover combines genetic code from two individuals

to generate children that hold part of the genome from both parents. On the other hand,

mutation consists of randomly modifying the genetic code ofan individual by altering

sections of the genome based on some (small) probability. Mutation allows the algorithm

to randomly sample new points in the search space to prevent apremature convergence to

local optima (Mitchell, 1996; Sipper, 1996).

In the field of transport protocols there is not much literature regarding the use of

GAs in MANETs, except for some research studies that have been focused on improving
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the performance of mechanisms that are closely related to transport, such as congestion

control and routing protocols. Galily, Roudsari, and Riazi(2005) made an interesting

contribution to congestion avoidance, for which they proposed a controller for an Active

Queue Management system that applies GA to find the optimal parameters to efficiently

regulate the link utilization and delay experienced by datapackets. The simulation results

show that the system was responsive and tolerant to the dynamics and noise of the network

environment, although only fixed networks were considered in the experimental analysis.

Montana and Redi (2005) made another important contribution that illustrates the

promising use of GAs to perform optimization of network protocols in MANETs.

Performance of routing protocols in MANETs, especially reactive protocols which

maintain a global view of the topology, have a great impact onthe overall performance of

the network infrastructure (Huang, Bhatti, & Parker, 2006;Montana & Redi, 2005).

Routing protocol parameters such as refresh and update intervals guide the ability of

adaptation to changes. Short intervals provide a more accurate view of the topology at any

given time, but increase the overhead incurred by the exchange of link state messages.

Therefore, parameter values need to be tuned so as to improvethe performance of the

routing protocol under different scenarios. However, the task of manually tuning and

identifying sets of optimal (or near-optimal) parameter values is combinatorial in nature

and not practical, so the proposed algorithm was designed totune multiple parameters of a

routing protocol through offline optimization using a single objective classical GA.

The optimization algorithm randomly generates an initial population with states

that consist of a list of values for the parameters to be optimized. The algorithm uses a

selection scheme with a steady-state replacement policy that adds a new individual and

discards the worst member of the population at each generation. It evaluates the fitness of

an individual by running a simulation of the network, collecting statistics about the

network performance given the current parameter values. The fitness value for an
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individual is a combined score based on the percentage of dropped packets and average

delay that were observed during the simulation.

The results of this work show that automated parameter optimization produced

significantly better parameter values than hand tuning. Although the algorithm was

considered to optimize only the parameters of a routing protocol, results also indicate that

automated parameter tuning through a GA may be successfullyapplied to improve the

performance of transport protocols in MANETs.

In a summary, the optimization of protocol parameters has several advantages over

particular adaptations of existing and new transport protocols. First, rather than

implementing one or more specialized mechanisms to deal with mobility, interference,

and others factors that have an impact on the protocol performance, an optimization

algorithm can improve the performance of the protocol underdifferent scenarios with

little or no protocol modifications. Second, because parameter tuning should require little

or no protocol adaptation, protocols can still interoperate between the wired and the

wireless worlds in a seamless manner. Third, optimization algorithms provide a more

general solution for end-to-end transport optimization over multi-hop paths, where noisy

conditions on intermediate links may significantly affect the overall performance of the

protocol.

Given the results and conclusions of the related work, the proposed optimization

algorithm aims to take advantage of the capabilities of GAs to provide a general solution

for protocol parameter optimization, so as to improve the end-to-end transport

performance under different mobility and interference conditions in MANETs.
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CHAPTER II

GENETIC ALGORITHM FOR TRANSPORT OPTIMIZATION

The proposal for protocol parameter optimization aims to improve the

performance of a network transport protocol for different classes of operating conditions.

Based on previous work, it has been demonstrated that mobility and interference have a

great impact on the performance of routing and transport protocols in multi-hop wireless

networks (Fu et al., 2005; Jain et al., 2003).

Modifiable parameters of transport protocols can be adjusted to adapt the protocol

to different operating conditions, improving the protocolperformance and allowing higher

level applications to satisfy their QoS requirements. The proposed algorithm, called

Genetic Algorithm for Transport Optimization (GATO), is a GA-based search algorithm

that enables automatic parameter tuning for transport protocols.

The main goal of GATO is to find a set of parameter values that improves the

protocol performance given the conditions of the network. If conditions change, the

algorithm automatically searches for a new configuration ofparameters that allows the

protocol to continue operating at maximum performance.

Several metrics can be used to quantify the performance of a transport protocol, for

example, transmission delay, number of retransmissions, number of bytes received per unit

of time, and others. For more complex scenarios and QoS requirements, a combination of

various metrics can also be used to determine the performance of a transport protocol.

In this research study, protocol performance will be measured in terms of

throughput, which can be defined as the amount of user data transferred from the sender to

the receiver over a given period of time. Other performance metrics or objective functions
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combining multiple metrics could be chosen, but for simplicity, this work will focus on a

single metric.

The maximum throughput that can be achieved by a transport protocol depends on

the majority of modifiable parameters that can be found in transport protocols, in

particular, parameters that are used for flow control. For example, a sender may stop

sending packets until an acknowledgment of the last sent packet is received. If the

previous sent packet is lost and the retransmission timeoutis too large, the flow of packets

is reduced and the throughput decreases. By adjusting the protocol parameters, flow

control mechanisms can react better to adverse conditions,such as higher packet drops,

and increase the flow of packets if necessary.

Hence, the fitness function of GATO computes the throughput achieved by the

protocol when configured with the parameter values that are encoded in the individual.

Each individual encodes a possible protocol configuration as a list of parameter values.

The genetic operators of GATO combine and randomly change the genetic information of

individuals as a mean to explore different regions of the search space, which is comprised

of a finite, but usually large, number of possible protocol configurations.

In this work, a reduced search space is used to validate the effectiveness GATO.

By having a reduced search space, the optimal parameter values of the protocol for a

specific scenario can be found in a reasonable amount of time using an exhaustive search.

The throughput achieved by the protocol when configured withthe optimal settings can be

used as a baseline to compare the performance of the protocolwhen configured with the

parameter values found by GATO. This comparison can be made as long as network

conditions are replicated over different runs of the searchalgorithms to assure that

differences in protocol performance are due only to different parameters values.
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CHAPTER III

TECHNICAL APPROACH

The proposed algorithm for transport optimization is basedon GAs, which are

stochastic search algorithms inspired in the theory of evolutionary computation and

genetics. GAs are commonly used to solve optimization problems as they can quickly

explore an extensive search space (Russell & Norvig, 2002) and are highly effective in the

presence of noise, where fitness evaluations may be subject to inconsistent or error-prone

measurements (Mitchell, 1996). Additionally, they have been shown to be successful at

finding solutions or optimizations for complex and difficultproblems for which traditional

search methods are slower or less effective. This chapter describes how GAs work and the

proposed algorithm for transport optimization.

Introduction to Genetic Algorithms

GAs follow the same idea of evolutionary algorithms where a population of

individuals evolves over time. Each individual in the population encodes a possible

solution to a problem as a finite string of symbols. During theevolutionary process,

individuals undergo a selection phase that places the fittest individuals into a mating pool,

from which they are paired in the presence of genetic operators that combine the genetic

information from both parents to generate offspring.

The resulting expanded population is then reduced to its original size by following

a replacement strategy for the individuals based on a fitnessfunction that guides how the

population evolves over time. In general, high-fitness individuals stand a better chance of

passing to the next generation and reproducing, while low-fitness ones are more likely to

disappear. This process is repeated until an individual whosatisfies a desired fitness level
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is obtained. However, in some cases, the stopping criteria can also take into consideration

the maximum number of generations, the maximum amount of consumed resources (time,

memory), or the inability to find better solutions after a certain number of consecutive

generations have passed.

More precisely, a GA incorporates a set of genetic operatorsthat simulate the

evolution process of survival of the fittest. These genetic operators are (a) selection, (b)

mutation, and (c) crossover. The selection operator is usedto populate a mating pool of

individuals that can participate in the reproduction process. Conversely, the crossover

operator (Figure 4) combines genetic code from two individuals to generate children who

resemble their parents, holding one or more sections of their parents’ genome.

(a) One-point crossover.

(b) Two-point crossover.

Figure 4.The crossover operator combines genetic code at randomly chosen points of the
parents’ genome.

On the other hand, the mutation operator (Figure 5) modifies the genetic code of

an individual by altering sections of the genome based on some (small) probability. This

operator is intended to diversify the population so as to avoid a rapid convergence of the

algorithm to local optima. The mutation operation is equivalent to performing random

sampling of the search space.
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Figure 5.The mutation operator randomly alters sections of the individual’s genome.

The standard version of a GA (Figure 6) starts by randomly generating an initial

population of individuals. At each iteration step, the individuals in the current generation

are evaluated using a fitness function. Then, individuals gothrough a selection process

from which two parents are selected for the reproduction phase of the algorithm.

input: the initial populationp and the fitness functionf
output: the best individual inp, according tof

repeat
q⇐ empty set
for i = 1 to SIZE(p) do

x ⇐ RANDOM-SELECTION(p, f )
y⇐ RANDOM-SELECTION(p, f )
child ⇐ REPRODUCE(x, y)
if some random probabilitythen

child ⇐ MUTATE(child)
end if
addchild to q

end for
p⇐ q

until some individual is fit enough, or enough time has elapsed

Figure 6.Pseudocode of a simple genetic algorithm (Russell & Norvig,2002, p. 119).

The offspring that results from the combination of both parents’ genome is

introduced to a new population. Then, the new generation replaces the current population

and the process is repeated until some individual is fit enough or until enough time has

passed. The algorithm returns the best individual in the current population according to
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the fitness function. Alghough this individual might not be the optimal solution, the best

individual of the population always encodes a partial optimal solution that could still be

useful depending on the characteristics of the problem.

Optimization Algorithm

GATO aims to provide the means for automatic protocol parameter tuning by

optimizing the parameter values of a network transport protocol for different operating

conditions in a MANET. The goal of GATO is to improve the performance of the protocol

in terms of throughput. By adjusting the modifiable parameters of a transport protocol, the

flow control mechanism of the protocol can react better to different network conditions,

increasing the overall throughput of the protocol.

GATO (Figure 7) starts by determining the fitness of each individual in the initial

population. At each iteration step, the algorithm computesa group of elite members from

the best individuals in the population. Then, for each individual in the remaining

population, a new child is generated from two parent individuals who are chosen

following a selection scheme called tournament selection.This new individual undergoes

a mutation phase based on a variable mutation probability. Then, following a steady-state

replacement policy, the new child replaces the worst individual in the population. This

process is repeated until the maximum number of generationsis reached or until the elite

members of the population have not changed for enough consecutive generations. The

algorithm returns the best individual in the population. This individual represents the set

of parameters that give the best performance of the protocol, given the operating

conditions that were current at the time the optimization task was performed.
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input: the initial populationp and the fitness functionf
output: the best individual inp, according tof

for i = 1 to SIZE(p) do
evaluatepi , f (pi)

end for
repeat

elite⇐ the bestn individuals inp, according tof
for i = 1 to (SIZE(p) - SIZE(elite)) do

x ⇐ TOURNAMENT-SELECTION(p)
y⇐ TOURNAMENT-SELECTION(p)
child ⇐ REPRODUCE(x, y)
child ⇐ MUTATE(child, x, y)
evaluatechild, f (child)
remove the worst individual inp, according tof
addchild to p

end for
addelite to p

until n generations have passed,
or the group ofelite members is the same aftermconsecutive generations

Figure 7.Pseudocode of the genetic algorithm for transport optimization.

More precisely, the design of GATO considers four differentaspects: (a)

representation, (b) genetic operators, (c) evaluation, and (d) stopping criteria. Each of

them plays an important role in the success of the optimization task as they define the

algorithm’s behavior and how quickly it converges to a solution under different scenarios.

Representation

The genome of individuals is represented as a list of parameter values to be

optimized. This type of representation is often referred toas a real-valued representation,

and it is commonly used for parameter optimization problemswhere it is more natural to

use real numbers than a binary encoding to form the individual’s genome. Although there

are not rigorous guidelines for selecting a specific encoding given the problem of interest
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(Mitchell, 1996), Wright (1991) demonstrated that real-coded GAs can outperform

binary-coded GAs since real-valued representations increase efficiency and precision.

When a real-valued representation is chosen, it is necessary to define a minimum

and a maximum value for each of the protocol’s parameters to be optimized, as well as a

step size that defines a discrete set of possible values within the allowable range of the

parameter. Defining a step size is important for parameters that can only take integer

values, such as maximum segment size, window size, number ofacknowledgements, and

others.

Genetic Operators

GATO takes an initial population generated with purely random individuals. At

each run, two members of the population are randomly chosen from a mating pool, which

is comprised of individuals that in average have a higher fitness value than the average

fitness value of the population. This mating pool is generated using a selection scheme

called tournament selection. On tournament selection,s individuals (competitors) hold a

tournament, withsbeing the tournament size. The winner of the tournament is the

individual with the highest fitness among thescompetitors; that individual is then inserted

into the mating pool. Tournaments are performed until the mating pool has reached a

certain size. When compared to other selection schemes, theadvantages of tournament

selection include (a) its simplicity and (b) the ability to increase or decrease the selection

pressure (intensity with which a GA tends to eliminate individuals) by increasing or

decreasing the tournament size, which allows GAs to adapt todifferent problem spaces

(Goldberg & Deb, 1991; Miller & Goldberg, 1995).

The algorithm generates a single child by combining the genome of both parents

using single-point crossover. The genetic information of the resulting individual may be

modified based on a mutation probability that is proportional to the degree of similarity
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between parents, meaning that the probability of the mutation operator is dynamically

adjusted according to the diversity of the population. Adapting the probability of genetic

operators has been shown to be effective at improving the convergence rate of GAs and

preventing GAs from converging to local optimum (Srinivas &Patnaik, 1994).

Based on the degree of similarity between parents, the more similar the parents

are, the higher the mutation probability is. When the algorithm starts to converge, the

mating pool would consist of individuals who are similar to each other. In this case, the

mutation probability increases, allowing the algorithm torandomly search other regions of

the problem space. On the other hand, if the diversity of the population is too high, the

mutation probability decreases to allow the algorithm to stabilize and refine the best

individuals in the population.

GATO also follows a steady-state replacement policy, wherethe new individual

replaces the worst member of the population in the current generation. Steady-state

replacement generally allows finding a solution much fasterthan the generational

approach because the algorithm can immediately exploit newindividuals (Montana &

Redi, 2005). In particular, the use of such replacement policy is important in the case of

the proposed algorithm because of the elevated cost of the fitness function, which requires

the protocol to operate for a certain amount of time in order to estimate its performance

given the current configuration.

Furthermore, GATO also maintains a fixed group of the best individuals across

generations. This strategy, commonly known aselitism, aims to avoid the loss of the best

individuals during selection, crossover, and mutation by keeping on the next generation an

individual whose performance is better than the performance of other population members

in the current generation. Elitism has been shown to providebetter solutions and higher

convergence speeds for different types of problems (Ahn & Ramakrishna, 2003; Montana

& Redi, 2005; Vasconcelos et al., 2001).
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Fitness Function

To evaluate an individual, GATO uses the parameter values encoded in the genome

of the individual to configure the protocol and measure how well it performs in the current

environment. More precisely, GATO creates and configures a connection to measure a

variety of potential performance metrics given the operating conditions of the network. A

performance metric can be based in the number of retransmissions, the transmission delay,

the throughput, or a combination of them. For some of the metrics, such as throughput or

transmission delay, GATO requires a mechanism to monitor the performance of the

protocol at the opposite end-point of the connection. In this case, the receiver node

collects information about the connection and sends it backto the transmitter so that the

algorithm can compute the fitness value of the individual.

Stopping Criteria

The main goal of GATO is to find an individual who leads to an improvement of

one or more performance metrics. Hence, the algorithm stopswhen it cannot find a better

individual after a given number of consecutive generationshave passed. In other words,

the group of elite members in the population remains the sameafter a certain number of

iterations. GATO also considers the total number of generations to prevent the system

from diverging. In this case, the algorithm returns the bestindividual from the population

when the maximum number of generations has passed.

Case Study

The validation of the algorithm is made by using the algorithm to automatically

tune the parameters of the Reliable UDP (RUDP) transport protocol. The objective of the

optimization is to maximize the throughput for end-to-end communication under different

conditions of mobility and interference.

28



The proposed algorithm performs the parameter optimization of RUDP over a

multi-hop wireless ad hoc network, which is sufficient to demonstrate (a) the ability of the

algorithm to optimize the protocol parameters in the presence of interference caused by

other nodes in the network given that the algorithm does not need to determine the source

of interference and (b) the effectiveness of the algorithm given that the objective of the

proposed optimization is to improve the protocol performance and not the overall

performance of the network.

RUDP is a simple but flexible transport protocol designed to support applications

that require reliable in-order transport of packets (Bova,Krivoruchka, & Cisco Systems,

1999). In terms of implementation, this protocol is less sophisticated than TCP but

provides a minimal set of QoS services for network transport. Similar to other protocols

for ad hoc networking, RUDP has a set of modifiable parametersthat can be used to

configure the protocol in response to a variety of conditions, allowing applications to

satisfy different QoS requirements.

More precisely, RUDP is a simple connection-oriented and packet-based transport

protocol originally designed to support transport of telecommunication signaling

protocols across IP networks. This UDP-based protocol provides a set of QoS

enhancements that allow a variety of applications to maintain a good quality stream

without the overhead of more sophisticated transport protocols, even in the presence of

severe network congestion or packet losses caused by link failures. Similar to TCP, RUDP

provides reliable in-order packet delivery, as well as basic flow control, error detection,

and keep-alive mechanisms. Additionally, RUDP allows the characteristics of each

connection to be individually configured so that applications with different transport

requirements can adapt themselves to the operating conditions of the network.

RUDP uses sequence numbers to guarantee in-order delivery and a three-way

handshake to synchronize sequence numbers between two peers. When a connection is
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first opened, each peer randomly chooses a sequence number and increments it before

sending a data packet. Before the connection is fully established, both peers negotiate a

set of parameters that includes (a) the maximum segment size, (b) the maximum number

of unacknowledged segments, and (c) the maximum number of segments that can be

received out of sequence. The last two parameters are used asa mean of flow control,

whereas the maximum segment size indicates the maximum sizeof a single RUDP

segment or data packet.

Moreover, the protocol specifies two types of segments to acknowledge received

data packets. The first type is the ACK segment, which is used to acknowledge segments

that were received in order. The second type, called Extended ACK (EACK), is used to

acknowledge segments that were received out of sequence. Additionally, data packets may

also be acknowledged by piggybacking its sequence number inthe header of a segment

that the receiver sends to the transmitter.

RUDP provides active and passive keep-alive mechanisms. The active keep-alive

mechanism consists of periodic transmissions of null (empty) segments if no data

segments are being transmitted, whereas the passive keep-alive mechanism makes use of a

counter to keep track of how many times a packet has been retransmitted. The connection

is considered broken if the receiver’s null segment timer expires or the retransmission

count for a data packet exceeds its maximum.

Bova et al. (1999) define the following protocol parameters:

1. Maximum segment size. It specifies the maximum size for an RUDP segment or

data packet, including the length of the RUDP header. The valid range for the

value of this parameter is 0 to 65,535.

2. Maximum number of outstanding segments. It specifies how many packets can

be transmitted without getting an acknowledgment. The valid range is 1 to 255.
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3. Maximum number of retransmissions. It specifies the maximum number of

consecutive retransmissions of a packet that will be attempted before a

connection is considered broken. The valid range is 0 to 255.A value of 0

indicates that the sender will continue to retransmit the packet forever.

4. Maximum number of cumulative acknowledgements. It specifies the maximum

number of packet acknowledgements that will be accumulatedbefore sending

an ACK or EACK. The valid range is 0 to 255. A value of 0 indicates that an

acknowledgment must be sent immediately after a data packetis received.

5. Maximum number of out of sequence packets. It specifies the maximum number

of out of sequence packets that will be accumulated before sending an EACK

segment. The valid range for this value is 0 to 255. A value of 0indicates an

EACK segment will be sent immediately if an out of sequence packet is

received.

6. Null segment timeout. It specifies the number of milliseconds a sender must

wait before sending a null segment if another segment is not sent. The valid

range is 0 to 65,535.

7. Retransmission timeout. It specifies the number of milliseconds a sender must

wait before retransmitting a packet that has not been acknowledged. The valid

range is 100 to 65,535.

8. Cumulative acknowledgement timeout. It specifies the number of milliseconds a

receiver must wait before sending an acknowledgment segment if another

segment is not sent. The valid range is 100 to 65,535, but it should be smaller

than the value of the retransmission timeout.

An object-oriented implementation of the protocol was developed in Java as there

was not a public reference implementation available at thattime. This open-source

implementation (Granados, 2009) is available for downloadat
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https://sourceforge.net/projects/rudp. The original design of the protocol has been

changed to simplify its implementation and provide capabilities that make possible its

integration with the Java Networking API (Java Networking Overview, n.d.) and the

proposed optimization algorithm. The modifications and additions to the protocol include

the following:

1. Support for error detection. In its original design, the protocol ensures data

integrity by calculating a checksum on the header and body of the packet;

however, the data integrity check performed at the UDP layer should be

sufficient to guarantee a normal operation of the protocol. Therefore, error

detection was not implemented.

2. Support for redundant connections. When a connection fails, applications using

RUDP can initiate the transfer of the state of the connection to another

connection and resume transmission ensuring that packets are not duplicated or

lost. Although having support for redundant connections is an interesting

feature, it was not considered as it makes the implementation unnecessarily

complex.

3. Support for auto reset of active connections. Either side of an RUDP connection

can initiate an auto reset when the number of retransmissions exceeds a

maximum value. In the event of an auto reset, both peers reset their states,

renegotiate the connection parameters, and then resume normal transmission of

packets. Auto reset was partially implemented and can only be initiated by the

application to renegotiate parameters on active connections, preventing the

application from sending new packets until all previously accepted packets are

delivered and the connection is reopened.

4. Support for connection monitoring. The original protocol was extended to

provide monitoring capabilities. Essentially, the protocol can be configured to
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monitor the rate at which the sender is transmitting data andthe rate at which

the receiver is receiving data. This information is shared between peers and is

also exposed to higher level applications so that decisionscan be made

regarding the adjustment of the protocol parameters to satisfy a variety of QoS

requirements.

5. Support for Java API integration. The original specification of RUDP makes a

clear distinction between client and server connections, each of them having a

different behavior. This implementation of the protocol provides a mechanism

by which each side of the connection behaves in the same manner as the other

peer. In this case, a peer assumes the role of a client by actively opening the

connection, whereas the peer assuming the role of a server performs the passive

opening. This modification to the protocol makes possible the integration with

the Java Networking API so that RUDP sockets can be used transparently by

existing Java applications.
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CHAPTER IV

EXPERIMENTS AND ANALYSIS OF RESULTS

Experiments were run to measure the performance of RUDP in multi-hop wireless

networks. Also, experiments were run to evaluate the effectiveness of the proposed

algorithm for optimizing the parameters of RUDP in order to maximize the throughput for

end-to-end transport over multiple hops. The description of the experiments and the

analysis of the results are presented in the next two sections.

Experimental Setup

The validation of the proposed algorithm was made over an emulation testbed

developed at the Institute for Human and Machine Cognition.This testbed uses theoretical

models to simulate the radio and interference signals that can be found in wireless

networks. Nodes were configured and used to emulate different multi-hop wireless

communication paths (Figure 8).

Figure 8.Emulated wireless network. There is a maximum of 8 hops (fromnode 1 to
node 9). Circles indicate the transmission range of a node.
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For each multi-hop path, nodes were positioned to form a linetopology with a

separation of 50 meters between nodes. The transmission power of each node was set to

6.5 milliwatts to provide a transmission range of approximately 75 meters using the Free

Space radio propagation model. With this configuration, nodes could only communicate

directly with its immediate neighbors and indirectly (through packet forwarding) with

nodes that were more than one hop away.

The testbed was configured to use a basic interference model that computes the

interference at nodeN based on the sum of all the simultaneous transmissions that reach,

but are not targeted to nodeN. Additionally, the capacity of all links was limited to 11

megabits per second, the rate of a IEEE 802.11b wireless network. For each evaluation,

the same propagation and interference models were used to ensure that differences in the

performance of RUDP were due solely to different parameter settings. Additionally, in

some scenarios, multiple experiments were run in parallel by segmenting the line topology

into shorter multi-hop paths, ensuring that the nodes on each network segment could not

interfere with nodes from other segments.

The RUDP parameters considered for optimization consist of(a) maximum

number of outstanding segments, (b) maximum number of cumulative acknowledgements,

(c) maximum number of packets received out of sequence, and (d) retransmission timeout.

The valid range for the value of the first three parameters was[1,2, . . .,8] whereas the

valid range for the retransmission timeout was[200,400, . . .,1,000], generating a search

space that consisted of 8·8 ·8 ·5= 2,560 parameter sets.

At each node, a Java server process was listening for RUDP connections on the

(emulated) wireless interface. In order to establish a connection with the server process, a

client RUDP socket had to actively initiate the connection and negotiate its initial

parameters. After a connection was established, the server’s connection handler would

start reading bytes continuously until signaled to gracefully close the connection.
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An initial experiment consisted of measuring the maximum throughput that can be

achieved by RUDP when using the recommended parameter settings. RUDP was

originally designed as a reliable transport mechanism for telecommunication signaling,

which does not require high throughput. Therefore, the recommended parameter settings

for RUDP were proposed to provide the minimal QoS capabilities for signaling protocols

requiring transport. Thus, a second experiment consisted of running an exhaustive search

over the 2,560 parameter sets to find the best configuration for the given scenario and

network operating conditions from 1 to 8 hops. The main objectives of this experiment

were to determine if the parameters of the RUDP protocol could be optimized for

throughput and to use the results as a baseline for comparingthe performance of GATO

over the same search space. The rest of the experiments were designed to analyze the

performance and effectiveness of GATO for optimizing throughput over 2, 4, and 8 hops

in static and dynamic environments.

In all runs, GATO was configured to use a tournament size of 30%the number of

individuals in the population. On the other hand, the size ofthe elite group at each

generation was 5% the size of the population. Additionally,the maximum number of

generations was 100. Finally, GATO was also configured to return the best individual of

the current population if no better solution could be found after three consecutive

generations.

Preliminary Analysis

The RUDP draft specifies the recommended values for each of the protocol

settings. In particular, the default values for the maximumnumber of outstanding

segments, maximum number of cumulative acknowledgements,maximum number of

packets received out of sequence, and retransmission timeout are 3, 3, 3, and 600 ms,

respectively. Hence, the first consideration was to identify if, in comparison with the
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default configuration, optimizing the protocol parameterscan significantly increase the

overall throughput of the protocol. In this preliminary analysis, an experiment was

conducted to determine the maximum throughput that can be achieved by using the

recommended RUDP settings and to identify the level of improvement that can be

achieved by modifying the protocol parameters (Figure 9).

Figure 9.Maximum throughput achieved by the Reliable User Datagram Protocol from 1
to 8 hops.

The exhaustive search results show that there was at least one set of parameter

values that could significantly increase the throughput of RUDP over multiple hops. By

modifying the parameter settings, the average throughput had a maximum improvement

between 650% (8 hops) and 930% (1 hop) when compared to the average throughput that

was achieved using the default configuration.

For example, in a 2-hop scenario, the protocol achieved an average throughput of

11.03 kilobytes per second (KB/s; SD = 3.68) using the default parameter values, whereas

the average throughput increased to 137.94 KB/s (SD = 10.10)when using the best
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configuration that was found during the exhaustive search. For an 8-hop scenario, the

protocol achieved an average throughput of 3.44 KB/s (SD = 0.89) using the default

parameter values, whereas the average throughput increased to 25.81 KB/s (SD = 13.08)

using the optimum configuration.

It can be observed also that the overall throughput decreased as packets were

transmitted over longer paths. This reduction in performance can be explained by the

increase in packet drops resulting from the interference caused by packet retransmissions

at each intermediate node. However, with an alpha level of .05 for all statistical tests, the

difference between average throughputs for a 2-hop scenario was statistically significant,

t(58) = 64.66, p < .0001. In the case of the 8-hop scenario, the difference between

average throughputs was also statistically significant,t(58) = 9.34, p < 0.0001.

These results verify the hypothesis that the protocol performance can be improved

by tuning the protocol parameter values. Thus, these preliminary results are used to

evaluate the effectiveness and performance of GATO over thesame reduced problem

space. In the validation of GATO, a 2-hop static path and population sizes of 10, 30, 60,

and 120 individuals were considered.

Optimizing the parameter values of RUDP using GATO show thatthe proposed

algorithm found sets of parameter values that allowed the protocol to achieve, in all cases,

an average throughput that was statistically equivalent tothe average throughput obtained

with an optimal protocol configuration (Figure 10).
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(a) 10 individuals. (b) 30 individuals.

(c) 60 individuals. (d) 120 individuals.

Figure 10.Maximum throughput achieved by the Reliable User Datagram Protocol over 2
hops when using the parameter values found by the Genetic Algorithm for Transport
Optimization. The horizontal line indicates the average maximum throughput when using
the optimal configuration.

However, it can be observed that the variance of the average throughput increased

for the cases where the GA was initialized with a random population of 10 and

30 individuals (Figure 11). These results show that the algorithm tends to find more local

optima when the size of the population is small because the genetic operators are unable

to prevent the algorithm from converging too rapidly. If thesize of the population is

larger, the algorithm may find better solutions but at the cost of a slower convergence.
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Consequently, if carefully chosen, a given population sizemay provide good solutions in a

reasonable amount of time.

Figure 11.Standard deviation of the throughput achieved by the Reliable User Datagram
Protocol over 2 hops when using the parameter values found bythe Genetic Algorithm for
Transport Optimization. The horizontal line indicates thestandard deviation of the
maximum throughput when using the optimal configuration.

Based on these assumptions, a population size of 50 individuals should be

sufficient to optimize the parameter values of RUDP in comparison with the results

obtained from the exhaustive search.

Simulation Results and Discussion

The proposed GA is designed to optimize end-to-end transport, which means that

GATO adjusts the protocol’s parameters and monitors its performance at the sender and

receiver end-points, respectively. Simulation results show that GATO is capable of

optimizing the parameter values of RUDP over longer communication paths, without

increasing the cost of the optimization task.
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Results show, for example, that the algorithm’s convergence time for both 4-hop

and 8-hop static paths, with a population of 50 individuals (Figure 12), was approximately

27 min (1620 s). However, in the process of searching for the optimal configuration, the

algorithm always tended to improve the throughput of the protocol.

(a) 4 hops.

(b) 8 hops.

Figure 12.Online optimization of the Reliable User Datagram Protocolusing the Genetic
Algorithm for Transport Optimization over 4 and 8 hops. The vertical line indicates the
time at which the algorithm converged.
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This tendency to gradually improve the performance of the protocol means that the

algorithm does not require, for example, 27 min of continuous traffic. Moreover, if the

state of the current population is maintained across multiple flows, the algorithm could

also gradually improve the overall performance of the protocol because, as long as packets

are sent, the evolution of individuals continues until an optimum solution is found.

Highlighted by these experimental results, the main shortcoming of GATO is the

time that the algorithm takes to converge. The fitness function of the algorithm adjusts the

protocol’s parameters based on the parameter values encoded by the individual. Then, it

monitors the performance of the protocol by sampling the throughput at the receiver

end-point. However, this sampling must be performed over a period of time that is

sufficient enough to ensure the accuracy of the throughput estimation. As a result, the cost

of the fitness function significantly increases the overall running time of the algorithm.

Improving the Efficiency of the Optimization Algorithm

There are several approaches that could lead to an improvement of the algorithm’s

performance. A first approach could be to assign to new offspring the same fitness value

of a similar or identical individual found in the population, which prevents GATO from

performing a new fitness evaluation. However, because of theunpredictability in wireless

communications and the characteristics of the proposed fitness function, throughput

estimations at a given time can vary significantly even when the protocol’s parameters are

not modified. Hence, when a good individual is evaluated in the presence of higher packet

drop rates, subsequent similar or identical individuals will be assigned the same bad

fitness value even under normal operating conditions. Assigning the same values could

cause the algorithm to converge to local optima and never findthe global optimal solution.

A second approach could be to dynamically adjust the size of the population to

reduce the number of evaluations. More precisely, the algorithm identifies similar or
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identical individuals and generates populations that consists of just unique members. In

this case, only the best member of a group of similar individuals survives and passes to the

next generation. The advantage of this approach is that it still allows for repeated

evaluations of individuals that are alike. These repeated evaluations helps GATO to

recognize individuals that may have had bad fitness values inprevious evaluations, but

that in the long term are actually good individuals.

Finally, a third approach could be to reduce the time that it takes to evaluate an

individual by sampling the throughput of the protocol at higher rates, in a shorter period of

time. Reducing the sampling time could make the fitness evaluation more sensitive to

bursts in traffic, increasing the variance of the estimated average throughput. Throughput

estimations at shorter intervals can be performed accurately if a constant and sufficient

rate of bytes is transmitted during the sampling time.

A variation of GATO that reduces the time for fitness assessment and dynamically

adjusts the size of the population shows a significant reduction in the overall execution

time. This variation of the algorithm, called Adaptive-GATO, also converges to

statistically equivalent solutions as the original algorithm. Adaptive-GATO computes a

degree of similarity between individuals to identify unique members in the population.

Given two individuals, the algorithm measures the distancebetween their two parameter

vectors by calculating, for each pair of corresponding parameter values, the number of

incremental steps that are required to transform a value into the other one. Then, the

algorithm calculates a normalized distance between the twovectors by dividing the sum of

all the parameter distances by the maximum possible distance between any two

individuals. A value in the range[0−1] determines how similar the individuals are. Two

individuals are identical if the degree of similarity is equal to 0, and they are completely

different if the degree of similarity is equal to 1.

43



A performance comparison between GATO and Adaptive-GATO (Figure 13),

shows that, similarly to GATO, Adaptive-GATO converged to asolution statistically

equivalent to the optimal solution found by the exhaustive search. However,

Adaptive-GATO required fewer fitness evaluations, which reduced the time needed for the

optimization task. For example, in the scenario where Adaptive-GATO was initialized

with a random population of 60 individuals, the algorithm required, in average, 28% fewer

evaluations than GATO, which reduced the average executiontime by 58.33%, from

24 min (1440 s) to 10 min (600 s).

(a) Average throughput. (b) Average number of evaluations.

(c) Average number of generations. (d) Average convergence time.

Figure 13.Performance comparison of the Genetic Algorithm for Transport Optimization
(GATO) and its adaptive version (Adaptive-GATO) over a 2-hop path, using population
sizes of 10, 30, 60, and 120 individuals.
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Adaptive-GATO gave the same results in the 4-hop and 8-hop scenarios that were

used to evaluate the performance of GATO (Figure 14). However, the execution times of

Adaptive-GATO were shorter than the execution times of GATObecause of the dynamic

resizing of the population, which reduces the number of fitness evaluations that are

performed at each iteration.

(a) 4 hops.

(b) 8 hops.

Figure 14.Online optimization of a flow using the Adaptive Genetic Algorithm for
Transport Optimization over 4 and 8 hops. The vertical line indicates the time at which the
algorithm converged.
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Because Adaptive-GATO adjusts the size of the population based on the diversity

of the individuals and how they evolve, the number of fitness evaluations can vary between

executions, independently of the number of hops. For example, in the case of the 4-hop

scenario, the algorithm took approximately 10 min (600 s) toconverge, whereas in the

8-hop scenario, the algorithm needed fewer evaluations andconverged in 8.5 min (510 s).

When compared to GATO, Adaptive-GATO requires significantly less time to

converge and reduces the variance of the achieved throughout because the algorithm

gradually reduces the size of the population by eliminatingsimilar individuals (Figure 15).

This reduction increases the probability of individuals with higher fitness values to be

chosen as parents, shrinking the size of the sample space. However, if the size of the

population is greatly reduced, Adaptive-GATO may convergeto local optimum since the

time that the algorithm takes to find the sub-optimal solution is not enough to diversify the

population and explore other regions of the search space where better solutions may be

found.

Figure 15.Online optimization comparison of the Genetic Algorithm for Transport
Optimization (GATO) and its adaptive version (Adaptive-GATO) over a 4-hop path (using
averaged data points to facilitate readability).
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Online Adaptation to Network Conditions

When the conditions of the network change, the algorithm needs to be restarted to

optimize the parameter values to adapt the protocol to thesenew conditions. Two tests

were conducted to verify that the algorithm can dynamicallyadjusts the parameter values

of the protocol to provide maximum throughput when network conditions change. In

these experiments, two additional nodes were added to the emulated wireless network to

create secondary flows that interfered with the flow targetedfor optimization (Figure 16) .

(a) Emulated wireless network topology.

(b) A flow going from node 1 to node 9.

(c) A secondary flow going from node A to node B.

Figure 16.Another emulated wireless network with two additional nodes. A secondary
connection interferes with the existing flow going through the 8-hop path.
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For each test, an RUDP connection was opened between nodes 1 and 9. Then,

after the flow going through this first connection was optimized, another connection was

opened between nodes A and B to interfere with the existing flow, triggering a second run

of the optimization algorithm.

In the first test, the secondary flow increased the induced interference over the flow

targeted for optimization, reducing the throughput of the optimized connection by 58%.

The change of operating conditions and the reduction of the throughput triggered a new

optimization task. Results show that Adaptive-GATO improved the performance of the

protocol in the presence of higher packet drops caused by theinduced interference

(Figure 17). The average throughput increased by 40%, from 8.65 to 14.36 KB/s.

Figure 17.Dynamic online optimization of a flow over an 8-hop path. At time 780
(vertical line), a secondary flow is started from node A to node B, interfering with the
optimized flow and triggering a new optimization task.

Each time the optimization algorithm is restarted, a new population of purely

random individuals is generated. However, it is possible that the time to converge could be

reduced by inserting into the initial population a group of individuals that are known to
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improve the performance of the protocol. This group of individuals could be, for example,

the elite group of the last generation from a previous run of the algorithm.

In the second test, the secondary flow that also increased theinterference after the

algorithm had already performed the optimization task. When the protocol detected a

degradation in the performance of the initial connection, the algorithm was restarted using

a population that contained 40 random individuals and the 10best individuals of the

previous run (Figure 18). In this case, results show that Adaptive-GATO improved the

performance of the protocol by 37%, and the time to converge was reduced by 14%.

Figure 18.Dynamic online optimization of a flow over an 8-hop path usinga predefined
initial population. At time 700 (vertical line), a secondary flow is started from node A to
node B, interfering with the optimized flow and triggering a new optimization task. The
elite group of individuals from the previous run was inserted into the initial population of
the next run of the optimization algorithm.

When comparing to the case where the initial population of the algorithm was

comprised of purely random individuals, using the previouselite group of individuals did

not have a significant effect in the convergence time of the algorithm (Figure 19).

Although, assuming that the optimal configurations of smallvariations in the operating
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conditions are located close to each other in the search space, this heuristic could provide

a rapid recovery when there are small changes in the conditions of the network.

Figure 19.Comparison of a dynamic online optimization of a flow over an 8-hop path
(using averaged data points to facilitate readability). Ateach restart of the algorithm, the
initial population was comprised of either purely random individuals (Random) or a
combination of random individuals and the elite members of the previous run of the
algorithm (Elite + Random).

On the other hand, if the configuration that was obtained in the previous run of the

algorithm is located far away in the search space from the optimal solution given the new

conditions, then using the best individuals from the previous run may cause a premature

convergence to local optima or increase the convergence time since more generations

would be needed to diversify the initial population of individuals.
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CHAPTER V

CONCLUSIONS

In mobile ad hoc networks, the variation of link characteristics and frequent and

unexpected changes in topology greatly decreases the performance of commonly used

transport protocols. Transport protocols usually have a set of modifiable parameters that

can be adjusted to provide better performance for specific scenarios, although they are

usually fixed and rarely changed after the protocol has been deployed. Because the

connectivity and operating conditions in wireless networks cannot be predicted during the

network design stage, the problem of tuning the parameters of the protocol becomes an

important and difficult one.

The experimental results demonstrate the feasibility of automatic parameter tuning

for transport protocols based on GAs. They show that the proposed algorithm was able to

optimize the parameters of a transport protocol to maximizethroughput for end-to-end

communication over multiple hops. The algorithm requires no knowledge of the

characteristics of the network and can optimize for different scenarios as long as the

following two conditions are met.

First, the rate of bytes transmitted must be sufficient enough to induce detectable

variations in performance when parameters are modified, otherwise the algorithm is

unable to distinguish between good sets and bad sets of parameters. And second, the rate

of changes in network conditions must be slower than the timethe algorithm requires to

converge. Even if the network conditions change faster, thealgorithm can still optimize as

it always tends to gradually improve the performance of the protocol.
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In the real world, an optimization time in the order of minutes is not practical for

MANETs, especially when there are frequent changes in topology. The use of heuristics

can help reduce the convergence time of a GA to make it more suitable for dynamic

environments. However, the effectiveness of such heuristics is tightly related to the

characteristics of the problem and the design of the GA.

For example, the results show that for the considered scenarios, allowing only

unique individuals to survive helped the adaptive algorithm to converge much faster than

the implementation of GATO working with populations of constant size. To dynamically

adjust the size of the population, Adaptive-GATO used a degree of similarity between

individuals based on a distance metric between corresponding parameter values, assuming

that resembling individuals would have similar fitness. However, depending on the type

and range of possible values, short distances between parameters do not always indicate a

similarity between individuals, and the heuristic would result ineffective in these cases.

Even though heuristics can speed up the execution time of a GA, the cost of the

fitness function still constitutes a major challenge for real-time optimization of transport

protocols. As an alternative, GAs can quickly provide suboptimal solutions that could

allow protocols to satisfy more flexible QoS requirements. For instance, a stopping

criteria could be specified so that the GA would return the first set of parameters that

provides a minimum desired throughput given the current operating conditions.

Another challenge for real-time optimization of transportprotocols using GAs is

that the fitness evaluation of the same set of parameters may return different values over

multiple runs. This inconsistency is a result of the variation of link characteristics at the

time the evaluation is performed. If the operating conditions change quite often, the

algorithm may never converge to an optimal solution becauseit cannot refine the

characteristics of the best individuals in the population.

52



However, elitism is shown to be useful on retaining the best individuals so that

they can be tested again and thus, over time, gain increasingly reliable fitness estimates

when the fitness function is noisy. Moreover, in the presenceof small amounts of noise,

the accumulation of fitness statistics over multiple runs ofthe algorithm may help the GA

to recover quickly from changes in the conditions of the network, although the inclusion

of good individuals in the initial population can be ineffective if the optimal configuration

of the protocol is located far away in the search space from previously found solutions.

Despite the difficulties associated with performing onlineoptimization using GAs,

the proposed algorithm was effective at improving the performance of the transport

protocol for multi-hop scenarios. Also, even though the execution time of GATO prevents

it from quickly adapting itself to changes in the operating conditions of the network, the

use of problem specific heuristics can help GATO to further reduce the time required for a

single optimization task in order to provide better performance over dynamic MANETs.
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